设x=ln(1+t^2),y=t-arctant,求d^2y\/dx^2
dy\/dx=[1-1\/(1+t²)] \/ [2t\/(1+t²)]=t\/2 d²y\/dx²=(1\/2)*dt\/dx=(1\/2)\/(dx\/dt)=(1\/2)\/[2t\/(1+t²)]=(1+t²)\/(4t)希望可以帮到你,如果解决了问题,请点下面的"选为好评回答"按钮,谢谢。
x=ln(1+t^2),y=t-arctant 求d^2y\/dx^2的导数,
先分别求出dx\/dt和dy\/dt,假设A=dx\/dt ,B=dy\/dt 然后用B\/A 得出dy\/dx 设C=B\/A=dy\/dx C中只含有t.因此,d^2y\/dx^2=C\/dt乘以dx\/dt的倒数(dt\/dx)=C\/dx=(dy\/dx)\/dx PS:式子A,B,C是简单的求导计算,这里就不计算了
设参数函数x=ln(1+t^2),y=t-arctant. 求(d^2y)\/(dx^2).
先分别求出dx\/dt和dy\/dt,假设a=dx\/dt ,b=dy\/dt 然后用b\/a 得出dy\/dx 设c=b\/a=dy\/dx c中只含有t。因此,d^2y\/dx^2=c\/dt乘以dx\/dt的倒数(dt\/dx)=c\/dx=(dy\/dx)\/dx ps:式子a,b,c是简单的求导计算,这里就不计算了 ...
微积分计算题 1)x=ln(1+t^2) y=t-arctant 求导 2)y=xlnx 求d^2y\/dx^...
1)∵x=ln(1+t^2) y=t-arctant ∴dx=2tdt\/(1+t^2),dy=(1-1\/(1+t^2))dt=t^2dt\/(1+t^2)故导数dy\/dx=[t^2dt\/(1+t^2)]\/[2tdt\/(1+t^2)]=t\/2;2)∵y=xlnx ∴dy\/dx=1+lnx故d^2y\/dx^2=d(dy\/dx)\/dx=1\/x;3)∵y=lnsinx ∴dy=(l...
设参数方程为x=ln(1 t^2) y=arctant,求yd^2\/dx^2
猜x=ln(1+t^2),y=arctant,则 dx\/dt=2t\/(1+t^2),dy\/dt=1\/(1+t^2),∴dy\/dx=1\/(2t),于是d^2y\/dx^2=d(dy\/dx)\/dt*dt\/dx =-1\/(2t^2)*(1+t^2)\/(2t)=-(1+t^2)\/(4t^3).
...参数方程x=ln√(1+t^2) y=arctant所确定的函数的导数求d^2y\/dx^2
答:x=ln√(1+t^2),dx\/dt=[1\/√(1+t^2)]*(1\/2)*2t\/√(1+t^2)=t\/(1+t^2)y=arctant,dy\/dt=1\/(1+t^2)所以:dy\/dx=1\/t y''=d²y\/dx²=d(dy\/dx)\/dx=[d(1\/t)\/dt]\/(dx\/dt)=(-1\/t^2)\/[t\/(1+t^2)]=-(1+t^2)\/t^3 所以:dy\/dx=1...
设{x=ln√(1+t^2),y=arctant, 求 dy\/dx及d^2·y\/d·x^2 有详细过程最...
这是参数方程求导 x'=t\/(1+t^2)y'=1\/(1+t^2)x''= [(1+t^2)-t*2t]\/(1+t^2)^2=(1-t^2)\/(1+t^2)^2 y''=-2t\/(1+t^2)^2 dy\/dx=y'\/x'=1\/t d^2y\/dx^2=(x'y''-x''y')\/(x')^3 =[-2t^2\/(1+t^2)^3-(1-t^2)\/(1+t^2)^3]\/[t\/...
求详细过程,谢谢
说明:^——表示次方 x=ln(1+t^2)y=t-arctant dx\/dt=2t\/(1+t^2)dy\/dt=1-1\/(1+t^2)=t^2\/(1+t^2)dy\/dx=(dy\/dt)\/(dx\/dt)=[t^2\/(1+t^2)]\/[2t\/(1+t^2)]=t\/2 d^2y\/dx^2=[d(t\/2)\/dt]\/(dx\/dt)=(1\/2)\/[2t\/(1+t^2)]=(1+t^2)\/(4t)
x=ln√(1+t^2),y=arctant。求d2y\/dx2 要过程哦
解答 如图
X=arctant,y=ln(1+t^2),y=y(X),求d^2y\/dX^2(即求y的二阶导数)
7 2014-11-10 设参数方程x=t-In(1+t^2) y=arctant 确... 2014-01-02 【急】求由参数方程组{x=ln根号(1+t^2),y=arc... 10 2018-07-25 设参数函数x=ln(1+t^2),y=t-arctant. ... 6 2009-12-29 x=ln(1+t^2),y=t-arctant 求d^2y\/...更多...