高二数学4.——5不等式选讲 含绝对值不等式的解法 如何引入课题

急 3.23日中午前要

第1个回答  2013-08-21
b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)�6�1|y-1|+(y+3)

(2)当1≤y≤3时,
所以当y=1时, = 4.

简评:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示
其数学实质.即求集合M中的元素满足关系式
例2.已知非负实数 , 满足 且 ,则 的最大值是( )
A. B. C. D.
解:画出图象,由线性规划知识可得,选D
例3.数列 由下列条件确定:
(1)证明:对于 ,
(2)证明:对于 .
证明:(1)

(2)当 时,
= 。
例4.解关于 的不等式:
分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当


例5.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是

解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得

(Ⅰ)
所以f(-2)的取值范围是[6,10].
解法二(数形结合)

建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.
解法三(利用方程的思想)

又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4, ①
所以 3≤3f(-1)≤6. ②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
简评:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:
2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.
例6.设函数f(x)=ax2+bx+c的图象与两直线y=x,y= x,均不相交.试证明对一切 都有 .
分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).
证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故
Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.

简评:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.

例7. 设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2< .
(1)当x∈〔0,x1 时,证明x<f(x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明:x0< .
解:(1)令F(x)=f(x)-x,因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2).当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,
又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x)
x1-f(x)=x1-〔x+F(x)〕=x1-x+a(x1-x)(x-x2)=(x1-x)〔1+a(x-x2)〕
∵0<x<x1<x2< ,∴x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0
∴x1-f(x)>0,由此得f(x)<x1.
(2)依题意:x0=- ,因为x1、x2是方程f(x)-x=0的两根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=-
∴x0=- ,因为ax2<1,
∴x0<

例8 已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1 ≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时, g(x)的最大值为2,求f(x).
命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属★★★★★级题目.
知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.
错解分析:本题综合性较强,其解答的关键是对函数f(x)的单调性的深刻理解,以及对条件“-1≤x≤1时|f(x)|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.
技巧与方法:本题(2)问有三种证法,证法一利用g(x)的单调性;证法二利用绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|;而证法三则是整体处理g(x)与f(x)的关系.
(1)证明:由条件当=1≤x≤1时,|f(x)|≤1,取x=0得:|c|=|f(0)|≤1,即|c|≤1.
(2)证法一:依题设|f(0)|≤1而f(0)=c,所以|c|≤1.当a>0时,g(x)=ax+b在〔-1,1〕上是增函数,于是
g(-1)≤g(x)≤g(1),(-1≤x≤1).
∵|f(x)|≤1,(-1≤x≤1),|c|≤1,
∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2,
g(-1)=-a+b=-f(-1)+c≥-(|f(-2)|+|c|)≥-2,
因此得|g(x)|≤2 (-1≤x≤1);
当a<0时,g(x)=ax+b在〔-1,1〕上是减函数,于是g(-1)≥g(x)≥g(1),(-1≤x≤1),
∵|f(x)|≤1 (-1≤x≤1),|c|≤1
∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.
综合以上结果,当-1≤x≤1时,都有|g(x)|≤2.
证法二:∵|f(x)|≤1(-1≤x≤1)
∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1,
∵f(x)=ax2+bx+c,∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1,
因此,根据绝对值不等式性质得:
|a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2,
|a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2,
∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2,
函数g(x)=ax+b的图象是一条直线,因此|g(x)|在〔-1,1〕上的最大值只能在区间的端点x=-1或x=1处取得,于是由|g(±1)|≤2得|g(x)|≤2,(-1<x<1 .

当-1≤x≤1时,有0≤ ≤1,-1≤ ≤0,
∵|f(x)|≤1,(-1≤x≤1),∴|f |≤1,|f( )|≤1;
因此当-1≤x≤1时,|g(x)|≤|f |+|f( )|≤2.
(3)解:因为a>0,g(x)在〔-1,1〕上是增函数,当x=1时取得最大值2,即
g(1)=a+b=f(1)-f(0)=2. ①
∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1.
因为当-1≤x≤1时,f(x)≥-1,即f(x)≥f(0),
根据二次函数的性质,直线x=0为f(x)的图象的对称轴,
由此得- <0 ,即b=0.
由①得a=2,所以f(x)=2x2-1.

例9.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为 ,以后每年末的汽车保有量依次为 ,每年新增汽车 万辆。由题意得

一、选择题
1.(★★★★★)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间〔0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中正确不等式的序号是( )
①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)
③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)
A.①③ B.②④ C.①④ D.②③
二、填空题
2.(★★★★★)下列四个命题中:①a+b≥2 ②sin2x+ ≥4 ③设x,y都是正数,若 =1,则x+y的最小值是12 ④若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真命题的序号是__________.
3.(★★★★★)某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处.
三、解答题
4.(★★★★★)已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2.
(1)如果x1<2<x2<4,设函数f(x)的对称轴为x=x0,求证x0>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
5.(★★★★)某种商品原来定价每件p元,每月将卖出n件,假若定价上涨x成(这里x成即 ,0<x≤10 .每月卖出数量将减少y成,而售货金额变成原来的 z倍.
(1)设y=ax,其中a是满足 ≤a<1的常数,用a来表示当售货金额最大时的x的值;
(2)若y= x,求使售货金额比原来有所增加的x的取值范围.
6.(★★★★★)设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)�6�1f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,f(x)>1;
(2)求证:f(x)在R上单调递减;
(3)设集合A={ (x,y)|f(x2)�6�1f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B= ,求a的取值范围.
7.(★★★★★)已知函数f(x)= (b<0)的值域是〔1,3〕,
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈〔-1,1〕时的单调性,并证明你的结论;
(3)若t∈R,求证:lg ≤F(|t- |-|t+ |)≤lg .
〔科普美文〕数学中的不等式关系
数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系.
等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美.不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异.如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.
数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系.许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.总之,不等式的应用体现了一定的综合性,灵活多样性.
等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系.数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现.不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?

参考答案
难点磁场
解:(1)令F(x)=f(x)-x,因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2).当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,
又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x)
x1-f(x)=x1-〔x+F(x)〕=x1-x+a(x1-x)(x-x2)=(x1-x)〔1+a(x-x2)〕
∵0<x<x1<x2< ,∴x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0
∴x1-f(x)>0,由此得f(x)<x1.
(2)依题意:x0=- ,因为x1、x2是方程f(x)-x=0的两根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=-
∴x0=- ,因为ax2<1,
∴x0<
歼灭难点训练
一、1.解析:由题意f(a)=g(a)>0,f(b)=g(b)>0,且f(a)>f(b),g(a)>g(b)
∴f(b)-f(-a)=f(b)+f(a)=g(a)+g(b)
而g(a)-g(-b)=g(a)-g(b)∴g(a)+g(b)-〔g(a)-g(b)〕
=2g(b)>0,∴f(b)-f(-a)>g(a)-g(-b)
同理可证:f(a)-f(-b)>g(b)-g(-a)
答案:A
二、2.解析:①②③不满足均值不等式的使用条件“正、定、等”.④式:|x-y|=|(x-2)-(y-2)|≤|(x-2)-(y-2)|≤|x-2|+|y-2|<ε+ε=2ε.
答案:④
3.解析:由已知y1= ;y2=0.8x(x为仓库与车站距离)费用之和y=y1+y2=0.8x+ ≥2 =8
当且仅当0.8x= 即x=5时“=”成立
答案:5公里处
三、4.证明:(1)设g(x)=f(x)-x=ax2+(b-1)x+1,且x>0.
∵x1<2<x2<4,∴(x1-2)(x2-2)<0,即x1x2<2(x1+x2)-4,

(2)解:由方程g(x)=ax2+(b-1)x+1=0可知x1�6�1x2= >0,所以x1,x2同号�
1°若0<x1<2,则x2-x1=2,∴x2=x1+2>2,
∴g(2)<0,即4a+2b-1<0 ①
又(x2-x1)2=
∴2a+1= (∵a>0)代入①式得,
2 <3-2b ②
解②得b<
2°若 -2<x1<0,则x2=-2+x1<-2
∴g(-2)<0,即4a-2b+3<0 ③
又2a+1= ,代入③式得
2 <2b-1 ④
解④得b> .
综上,当0<x1<2时,b< ,当-2<x1<0时,b> .
5.解:(1)由题意知某商品定价上涨x成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p(1+ )元、n(1- )元、npz元,因而
,在y=ax的条件下,z= 〔-a
〔x- 〕2+100+ 〕.由于 ≤a<1,则0< ≤10.
要使售货金额最大,即使z值最大,此时x= .
(2)由z= (10+x)(10- x)>1,解得0<x<5.
6.(1)证明:令m>0,n=0得:f(m)=f(m)�6�1f(0).∵f(m)≠0,∴f(0)=1
取m=m,n=-m,(m<0),得f(0)=f(m)f(-m)
∴f(m)= ,∵m<0,∴-m>0,∴0<f(-m)<1,∴f(m)>1
(2)证明:任取x1,x2∈R,则f(x1)-f(x2)=f(x1)-f〔(x2-x1)+x1〕
=f(x1)-f(x2-x1)�6�1f(x1)=f(x1)〔1-f(x2-x1)〕,
∵f(x1)>0,1-f(x2-x1)>0,∴f(x1)>f(x2),
∴函数f(x)在R上为单调减函数.
(3)由 ,由题意此不等式组无解,数形结合得: ≥1,解得a2≤3
∴a∈〔- , 〕
7.(1)解:设y= ,则(y-2)x2-bx+y-c=0 ①
∵x∈R,∴①的判别式Δ≥0,即 b2-4(y-2)(y-c)≥0,
即4y2-4(2+c)y+8c+b2≤0 ②
由条件知,不等式②的解集是〔1,3〕
∴1,3是方程4y2-4(2+c)y+8c+b2=0的两根
∴c=2,b=-2,b=2(舍)
(2)任取x1,x2∈〔-1,1〕,且x2>x1,则x2-x1>0,且
(x2-x1)(1-x1x2)>0,∴f(x2)-f(x1)=- >0,
∴f(x2)>f(x1),lgf(x2)>lgf(x1),即F(x2)>F(x1)
∴F(x)为增函数.

即- ≤u≤ ,根据F(x)的单调性知
F(- )≤F(u)≤F( ),∴lg ≤F(|t- |-|t+ |)≤lg 对任意实数t 成立.

高二数学4.——5不等式选讲 含绝对值不等式的解法 如何引入课题
不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有...

高中数学选修4--5(不等式选讲)?
首先利用线性关系(多元一次式),用已知(x+y、x-y)表示所求(x+5y)。其次利用绝对值不等式的性质,得到所需结论。供参考,请笑纳。

什么是绝对值、相对值的概念 用与哪些科学、学科?
第二部分讨论了有关绝对值不等式的性质及绝对值不等式的解法.绝对值是与实数有关的一个基本而重要的概念,讨论关于绝对值的不等式具有重要的意义.绝对值三角不等式是一个基本的结论,教科书首先引导学生借助于实数在数轴上的表示和绝对值的几何意义,引导学生从数的运算角度探究归纳出绝对值三角不等式,接着联系向量形式...

高二数学学习哪些书,有哪些冷门小技巧?
第一部分:不等式 1、选修4-5:不等式选讲,包括不等关系与基本不等式,几个重要不等式。2、选修2-2:第一章推理与证明,涉及综合法、分析法、反证法、数学归纳法。3、必修5:第三章不等式,内容涵盖不等关系、一元二次不等式与基本不等式。第二部分:解析几何 1、选修4-4:坐标系与参数方程,...

高二数学选修4-5不等式选讲,求大神帮忙~
第一张图的第一问不用说了,答案为9。第二问利用第一问的结论,可以得到1\/(a2+b+1)≤(1+b+c2)\/9,后面两个以此类推,然后将四个式子通分相加,把式子化为(3+a+b+c+(a+b+c)∧2)\/9,然后代入已知a+b+c=3就行了。第二张图貌似没有照完,恕我无法解答。

(本小题满分10分)选修4-5:不等式选讲函数 (1)画出函数 的图象;(2...
(1) 则图象如图. ---5分(2) 由 得 又因为 则有 解不等式 , 得 (1)采用零点分段法,把f(x)转化为分段函数,然后分段画出图像即可.(2)本小题关键是把 转化为 然后利用绝对值不等式的性质求出 所以 , 然后解绝对值不等式即可.解:(1) 则图象如图. -...

选修4—5:不等式选讲已知函数 (1)若不等式 的解集为 ,求实数a,m的值...
解之得 或 或 ,即 ;综上,当 时,原不等式的解集为 ,当 时,原不等式的解集为 . 10分 点评:中档题,解简单绝对值不等式,一般要考虑去绝对值的符号。有时利用绝对值的几何意义则更为简单。(II)利用分类讨论思想,转化成一元二次不等式组,使问题得解。

(本小题满分10分)选修4—5:不等式选讲已知关于x的不等式 (其中...
……3分 时, ,此时 不存在 ∴不等式的解集为 ……… 5分(Ⅱ)∵设 故 ,即 的最小值为 ………8分解得 ……10分点评:带有两个绝对值符号的函数采用零点分段法计算化简,第二问中将不等式有解转化为求函数值域,函数中这种转化思路是经常用到的须加以重视 ...

高考那个不等式选讲怎么答老师说含绝对值不等式用零点分段法,啥意思...
主要思路就是把所有的绝对值都消去,也就是讨论自变量的取值范围。这个能够有多大技巧呢?在一些特殊情况下倒是有小技巧,比如|x-1|+|x+1|>2,只要注意到2是1与-1之间的距离,根据几何意义,满足不等式的数轴上的点x到1与-1的距离之和大于1与-1距离,所以x在-1与1之外,即x>1或x<-1。

(选修4-5:不等式选讲)已知函数f(x)=|x-4|+|x-1|.(1)求f(x)的最小值...
2x , x<13 , 1 ≤x<42x?5 , x≥4,故当1≤x≤4时,f(x)min=3.(2)由于|x-4|+|x-1|表示数轴上的x对应点到4和1对应点的距离之和,而0和5 对应点到4和1对应点的距离之和正好等于5,故不等式|x-4|+|x-1|≤5的解集为{x|0≤x≤5}.

相似回答