“有十二个外表相同的球,其中有一个坏球,它的重量和其它十

“有十二个外表相同的球,其中有一个坏球,它的重量和其它十
一个有轻微的(但是可以测量出来的)差别。现在有一架没有砝码的
很灵敏的天平,问如何称三次就保证找出那个坏球,并知道它比标准
球重还是轻。”

题目中并没有明确说明特殊小球的轻重情况,直接假设其轻重不严谨
参考答案1(不是我的):
首先,把12个小球分成三等份,每份四只。
拿出其中两份放到天平两侧称(第一次)
情况一:天平是平衡的。
那么那八个拿上去称的小球都是正常的,特殊的在四个里面。
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
如天平平衡,特殊的是剩下那个。
如果不平衡,在天平上面的那三个里。而且知道是重了还是轻了。
剩下三个中拿两个来称,因为已经知道重轻,所以就可以知道特殊的了。(第三次)
情况二:天平倾斜。
特殊的小球在天平的那八个里面。
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4。
剩下的确定为四个正常的记为C。
把A1B2B3B4放到一边,B1和三个正常的C小球放一边。(第二次)
情况一:天平平衡了。
特殊小球在A2A3A4里面,而且知道特殊小球比较重。
把A2A3称一下,就知道三个里面哪个是特殊的了。(第三次)
情况二:天平依然是A1的那边比较重。
特殊的小球在A1和B1之间。
随便拿一个和正常的称,就知道哪个特殊了。(第三次)
情况三:天平反过来,B1那边比较重了。
特殊小球在B2B3B4中间,而且知道特殊小球比较轻。
把B2B3称一下,就知道哪个是特殊的了。(第三次)

参考答案2:
此称法称三次就保证找出那个坏球,并知道它比标准球重还是轻。
将十二个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果右重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球轻;如果是5号,则它比标准球重。
第三次将1号放在左边,2号放在右边。
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻。
第三次将2号放在左边,3号放在右边。
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻。
3.如果左重则坏球在拿到左边的6-8号,且比标准球重。
第三次将6号放在左边,7号放在右边。
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重。
2.如果天平平衡,则坏球在9-12号。
第二次将1-3号放在左边,9-11号放在右边。
1.如果右重则坏球在9-11号且坏球较重。
第三次将9号放在左边,10号放在右边。
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重。
2.如果平衡则坏球为12号。
第三次将1号放在左边,12号放在右边。
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻。
3.如果左重则坏球在9-11号且坏球较轻。
第三次将9号放在左边,10号放在右边。
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻。
3.如果左重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻。
第三次将6号放在左边,7号放在右边。
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重。
第三次将2号放在左边,3号放在右边。
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重。
3.如果左重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球重;如果是5号,则它比标准球轻。
第三次将1号放在左边,2号放在右边。
1.这次不可能右重。
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-08-21
很简单,12球分两组,其中有一组肯定轻。拿出来这6个。在分两组一组3个
然后还会有一组是轻的。
最后在剩余的这3个里随便那出2个。如果平衡那么剩下的那个就是。如果有一个轻的。那么他就是了! 见笑
第2个回答  2013-08-21
有2种可能

一种是坏球轻

一种是坏球重

你说的是哪种?

“有十二个外表相同的球,其中有一个坏球,它的重量和其它十
1.如果右重则2号是坏球且比标准球轻;2.如果平衡则4号是坏球且比标准球轻;3.如果左重则3号是坏球且比标准球轻。3.如果左重则坏球在拿到左边的6-8号,且比标准球重。第三次将6号放在左边,7号放在右边。1.如果右重则7号是坏球且比标准球重;2.如果平衡则8号是坏球且比标准球重;3...

小学数学题:有十二个球,其中一个是坏的,用天平称三次,如何找出那个坏球...
“有十二个外表相同的球,其中有一个坏球,它的重量和其它十 一个有轻微的(但是可以测量出来的)差别。现在有一架没有砝码的 很灵敏的天平,问如何称三次就保证找出那个坏球,并知道它比标准 球重还是轻。”

有12个外观一样的球,其中一个球的质量不等于其他球,有一天平 ,无砝码...
第一步肯定是需要分成平均的3分

有12个形状、大小完全相同的球,以知其中有一个球质量与其他球不同,现有...
1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分...

...大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝 ...
对B1来说,说明上面所动的球对于天平的平衡没有影响,也就是说只有X4,Y4两个没有变化的球中有不标准的球的存在,只需要拿其中一个出来和标准的球(就取Z4好了)称第三次即可,如果平衡剩下的球不标准,由前面的天平方向判断轻重,如果不平衡直接可以判断轻重。对B2来说,说明X1,X2,X3其中有...

...大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝 ...
)所以就是B是坏球,也是轻球.如果1和2不平,那么1,2里面肯定就有一个是坏球,而且由于1,2来自重球组,所以重的那个就是坏的. 同理,要是3,4,B是重的一边,那么推理过程就和上面的一样.参考资料:http:\/\/www.hanshouren.com\/one\/20100828\/28784.html ...

12个外观一样的球,其中有一个球的重量与其它球不同,用天平称三次,如何...
有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:可 能 * -* 结 果 * * 可 能 *-* 结 果 1号球,且重 -左、右、右 1号球,且轻 -右、左、左 2号球,且重 -右、左、右 2号球,且轻 -左、右、左 3号球,且重...

有十二个外观一样的乒乓球,其中有一个重量是特殊的不知道是轻还是重,其...
如果第二次右重,则坏球在没有触动的1、5号。如果是1号,则它比标准球轻;如果是5号,则它比标准球重。第三次将1号放在左边,2号放在右边。如果右重,则1号是坏球且比标准球轻;如果平衡,则5号是坏球且比标准球重;这次不可能左重。如果第二次平衡,则坏球在被拿掉的2-4号,且比标准...

...大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝 ...
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那个重量异常的球找出来,并且知道它比其它十一个球较重还是较轻。将12个球分为三组,分别标号1234 5678 abcd 第一次称量:1234 VS 5678 情况A:1234=5678 结论:坏球在abcd里 第二次...

有12只球,其中只有一只球的质量与别的球不一样。你用一个天平秤分3次...
有12个球特征相同,其中只有一个重量异常,要求用一部没有砝码的天平称三次,将那个重量异常的球找出来。网上的最多的方法是逻辑法,还有少数画成图的所谓策略树和基于此的程序算法.这道题有13种不同的答案.这里我提出一种新的完全的数学解法:一·首先提出称量的数学模型:把一次称量看成一个一次代数式...

相似回答