求不定积分∫sin2xdx/√(a^2cos^2x+b^2sin^2x)

如题所述

1.将分母变为sin2x即原式为∫[(4cos2x/sin^2(2x))]dx
2.进行换元即2x变为t,原式变为∫[(2cos2x/sin^2t)]dt.
3继续换元,可观察到(sin t)'=cost.所以原式等于2∫[(1/sin^2t]d(sint).
4.得出答案为:(-2/sint)+c
5.将t换回为2x有(-2/sin2x)+c.
温馨提示:内容为网友见解,仅供参考
第1个回答  2015-04-17

本回答被提问者采纳

1\/(a^2cos^x+b^2sin^x)的不定积分
∫dx\/(a^2sin^2x+b^2cos^2x)=∫dx\/a^2*cos^2x*(tan^2x+b^2\/a^2)=1\/a^2∫sec^2xdx\/(tan^2x+b^2\/a^2)=1\/a^2∫d(tanx)\/(tan^2x+(b\/a)^2)=1\/a^2*a\/b*arctan(ax\/b)+C =(1\/ab)*arctan(ax\/b)+C 希望对你有所帮助 还望采纳~~

求不定积分∫sin^2xdx
sin^2x=(1-cos2x)\/2 ∫sin^2xdx =1\/2∫1dx-1\/2∫cos2xdx =x\/2-1\/4∫cos2xd2x =x\/2-sin2x\/4+C

大神,求不定积分 ln(a^2sin^2x+b^2cos^2x)dx
分析:最多只能算到这里了,貌似不定积分没有初等表达式?应该是求定积分

cos 2x \/sin^2 x*cos^2 x不定积分
∫cos2xdx\/(sin^2xcos^2x)= 4∫cos2xdx\/(2sinxcosx)^2 =4 ∫cos2xdx\/(sin2x)^2 =2 ∫cos2xd(2x)\/(sin2x)^2 =2 ∫d(sin2x)\/(sin2x)^2 =-2*1\/(sin2x)+c =-2csc2x+c.

cos2x\/sin^2xcos^2x的不定积分
∫cos2xdx\/(sin^2xcos^2x)= 4∫cos2xdx\/(2sinxcosx)^2 =4 ∫cos2xdx\/(sin2x)^2 =2 ∫cos2xd(2x)\/(sin2x)^2 =2 ∫d(sin2x)\/(sin2x)^2 =-2*1\/(sin2x)+c =-2csc2x+c.

求不定积分∫sin^2xdx
∫sin^2xdx的不定积分是x\/2-sin2x\/4+C。∫sin^2xdxsin^2x=(1-cos2x)\/2则∫sin^2xdx =1\/2∫1dx-1\/2∫cos2xdx =x\/2-1\/4∫cos2xd2x =x\/2-sin2x\/4+C 所以∫sin^2xdx的不定积分是x\/2-sin2x\/4+C。

[sin^2(x)]*[cos^2(x)]的不定积分
∫[sin^2(x)]*[cos^2(x)]dx =∫(sinxcosx)^2dx =∫(sin2x\/2)^2dx =1\/4∫(sin2x)^2dx =1\/8∫(1-cos4x)dx =x\/8-1\/32∫cos4xd4x =x\/8-1\/32sin4x+C 希望对您有帮助!如有不明白,可以追问!!谢谢采纳!

不定积分∫sin^2(x) dx的原函数是什么?
方法如下,请作参考:

求不定积分 sin2x\/cosx+sin^2x
cosx-1\/2)|+c =(1\/√5-1)ln|√5\/2+(cosx-1\/2)|-(1\/√5+1)ln|√5\/2-(cosx-1\/2)|+c 连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

sin^2xcos^2x不定积分
∫sin^2xcos^2xdx=1\/4∫(sin2x)^2dx=1\/8∫(1-cos4x)dx=1\/8(x-1\/4sin4x)+C=x\/8-(sin4x)\/32+C满意请采纳,谢谢~

相似回答