一般有4种解法,分别是配方法,公式法(这种方法要熟知判别式,即判别b^2-4ac是大于0,小于0还是等于0,若大于或等于0,则方程有解,若小于0则无解,还有判别式是由分解一元二次方程 ax^2+bx+c=0(a、b、c是实数a≠0)得来的),因式分解法以及直接开平方法。公式法适用于所有的一元二次方程,后面两种则是要有一定的条件才能运用,一般运用后面两种方法解题比较简单。下面我就根据不同的方法举例说明。 1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n
例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)^2=7
∴(3x+1)^2=7
∴3x+1=±√7(注意不要丢解)
∴x= ...
∴原方程的解为x1=...,x2= ...
(2)解: 9x^2-24x+16=11
∴(3x-4)^2=11
∴3x-4=±√11
∴x= ...
∴原方程的解为x1=...,x2= ...
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将固定数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x=-c/a
方程两边分别加上一次项系数的一半的平方:x^2+(b/a)x+0.5(b/a)^2=-c/a+0.5(b/a)^2
方程左边成为一个完全平方式:[x+0.5(b/a)]^2=-c/a+0.5(b/a)^2
当b2-4ac≥0时,x+ =± √[-c/a+0.5(b/a)^2 ]-0.5(b/a)
∴x=...(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x^2-x=
方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2
配方:(x-)^2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。
当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个共轭的虚数根)(初中理解为无实数根)
例3.用公式法解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
(3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x^2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x^2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
其实还有一个十字相乘法,但是我不知道你们的老师有没有教(至少我们的教程里就没有)如果你要是想知道可以另外和我说,我再教你。 我个人认为想要熟练的运用这些方法还是要多练,然后自己摸索感觉,根据长时期的感觉来解题,不过这是一个很长的适应时间,希望你能努力。
温馨提示:内容为网友见解,仅供参考
一元二次方程怎么解?详细点最好有例子多种方法???谢谢!
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n 例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11...
一元二次方程怎么解?
1、直接开方很简单,直接把两边的平方去掉即可,直接开方会有两个根。2、因式分解法原理是利用平方和公式(ab)=a2ab+b或平方差公式(a+b)(a-b)=a-b,如图所示。3、如x-9=0这个式子,可以把9看做3,进行因式分解如图所示。4、0乘以任何数都得0,所以结果如图所示。5、先将方程化为ax+bx=c...
一元二次方程怎么解?
4.直接开平方法 (可解部分一元二次方程)5.代数法 (可解全部一元二次方程)ax^2+bx+c=0 同时除以a,可变为x^2+bx\/a+c\/a=0 设:x=y-b\/2 方程就变成:(y^2+b^2\/4-by)+(by+b^2\/2)+c=0 X错__应为 (y^2+b^2\/4-by)除以(by-b^2\/2)+c=0 再变成:y^2+(b^22...
一元二次不等式怎么解,求详细方法。最好有例题。谢谢。
(1)将一元二次方程配成(x+m)=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax²+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上...
一元两次方程怎么解
方法有多种:第一:配方法,比如x^2-2x-3=0,可以配方成:(x^2-2x+1)-4=0即(x-1)^2=4两边开方可解。第二:因式分解法,还是上述例子,因式分解为:(x+1)*(x-3)=0,那么知解为:x=-1和x=3。第三:一般方法,即判别式法,任何一元二次方程(ax^2+bx+c=0)的根都可写成:x=...
一元二次方程怎么解
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)⊃2;=n (n≥0)的 方程,其解为x=±√n+m . 例1.解方程(1)(x-2)⊃2;=9(2)9x⊃2;-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)⊃2;,右边=...
如何解一元二次不等式?
简单分析一下,详情如图所示
一元二次方程怎么解?要简便的方法,适合于中考。
其中公式法是通法,可以解任何一个一元二次方程. 4.一元二次方程根的判别式 一元二次方程根的判别式为. △>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. 上述由左边可推出右边,反过来也可由右边推出左边. 5.一元二次方程根与系数的...
一元二次方程怎么解
解决一元二次方程有多种方法,主要包括分解因式法、公式法、配方法、开方法和均值代换法。首先,分解因式法适用于部分方程,如提公因式法、平方差公式和完全平方公式,以及十字相乘法,如例子中的x^2+2x+1=0和x(x+1)-3(x+1)=0,通过因式分解找到根的解。公式法适用于所有一元二次方程,利用...
一元二次方程怎么解?
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用...