可不可以从这一步直接求啊?【∫cost/(sint+cost)dt】不用令A,B了,常规一点的!
追答直接不容易积,这样要简单些!
本回答被提问者采纳1\/(x+根号1-x^2)的积分_
设x=sint,dx=d(sint)=costdt则S 1\/(x+根号1-x^2) dx=S cost\/(sint+cost) dt故原式=∫cost\/(sint+cost)dt=A.令B=∫sint\/(sint+cost)dt,则A+B=∫dt=t+c1A-B=∫(cost-sint)\/(sint+cost)dt=∫d(sint+cost)\/(sint+cost)=l...
1\/(x+根号1-x^2)的积分_
S 1\/(x+根号1-x^2) dx =S cost\/(sint+cost) dt 故原式=∫cost\/(sint+cost)dt=A。令B=∫sint\/(sint+cost)dt,则A+B=∫dt=t+c1 A-B=∫(cost-sint)\/(sint+cost)dt =∫d(sint+cost)\/(sint+cost)=ln|sint+cost|+c2 所以 A=1\/2(t+ln|sint+cost|)+c 故原式=1\/2(arc...
求不定积分1\/x+根号下1-x^2
令x=sinu,则:u=arcsinx,dx=cosudu。∴∫{1\/[x+√(1-x^2)]}dx =∫[1\/(sinu+cosu)]cosudu =∫[cosu\/(sinu+cosu)]du。=(√2\/2)∫{cosu\/[(√2\/2)sinu+(√2\/2)cosu]}du =(√2\/2)∫{cos(u+π\/4-π\/4)\/[(sinucos(π\/4)+cosus...
1除以(x乘根号1-x^2)的不定积分
=-ln|x\/[√(1-x^2)-1]|+C =ln|[√(1-x^2)-1]\/x|+C
求不定积分∫1\/1+根号(1-x^2)dx
∫dx\/(1+√(1-x^2))x=sinu dx=cosudu √(1-x^2)=cosu tan(u\/2)=sinu\/(1+cosu)=x\/(1+√(1-x^2))=∫cosudu\/(1+cosu)=∫[1-1\/(1+cosu)]du =u-∫du\/(1+cosu)=u-∫d(u\/2)\/(cos(u\/2))^2 =u-tan(u\/2)+C =arcsinx - x\/(1+√(1-x^2)) +C ...
∫dx\/1+√1-x^2
用第二换元积分法:
求积分dx\/(1+根号(1-x2)) 详解过程~谢谢.
∫dx\/[1+(√1-x^2)]x=sinu √(1-x^2)=cosu tan(u\/2)=sinu\/(1+cosu)=x\/[1+√1-x^2)]=∫cosudu\/(1+cosu)=∫du-∫du\/(1+cosu)=u-∫d(u\/2)\/(cosu\/2)^2=u-tan(u\/2)+C=arcsinx-x\/[1+√(1-x^2)]+C
1\/(1+根号里面(1-x的平方)) 的不定积分 求详细过程
]dt =∫dt-∫[1\/(1+cost)]dt(上下同乘1-cost得到下面式子)=t-∫[(1-cost)\/(sin^2t)]dt =t-∫csc^2t-∫cotcsctdt =t+cott+csct+C 因为sint=x\/1,作辅助三角形,得 cott=[√(1-x^2)]\/x csct=1\/sint=1\/x 所以,原式=arcsinx+{[√(1-x^2)]\/x}+(1\/x)+C ...
1除以(x乘根号1-x^2)的不定积分
(x^2)*√[x\/(1-x)];如是第一种情形积分:设t=√x,则dx=2tdt;∫[x^2(√x)\/(1-x)]dx=∫[2t^6\/(1-t^2]dt=-2∫t^4dt-2∫t^2dt-2∫dt+2∫[dt\/(1-t^2)=-(2\/5)t^5-(2\/3)t^3-2t+(1\/2)ln[(1+t)\/(1-t)]+c =-(2\/5)x^2√x-(2\/3)x√x-2√x...
dx\/(x+根号下(1-x平方))的不定积分
展开全部 令x=siny,则:√(1-x^2)=√[1-(siny)^2]=cosy, y=arcsinx, dx=cosydy.原式=∫[cosy\/(siny+cosy)]dy =∫{cosy(cosy-siny)\/[(cosy)^2-(siny)^2]}dy =∫[(cosy)^2\/cos2y]... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 ...