当x→0时,xsin1/x的极限求解如下:
x→0时,1/x→∞,所以sin1/x不能等价于1/x。可以等价的:x→0时,sinx~x。x→∞时,1/x→0,sin1/x~1/x。
极限思想的思维功能
极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
“无限”与’有限‘概念本质不同,但是二者又有联系,“无限”是大脑抽象思维的概念,存在于大脑里。“有限”是客观实际存在的千变万化的事物的“量”的映射,符合客观实际规律的“无限”属于整体,按公理,整体大于局部思维。
当x→0时, xsin1\/ x的极限是多少?
当x→0时,xsin1\/x的极限求解如下:x→0时,1\/x→∞,所以sin1\/x不能等价于1\/x。可以等价的:x→0时,sinx~x。x→∞时,1\/x→0,sin1\/x~1\/x。极限思想的思维功能 极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量...
当x→0时,xsin1\/x的极限是多少?
当x→0时,xsin1\/x的极限求解如下:x→0时,1\/x→∞,所以sin1\/x不能等价于1\/x。可以等价的:x→0时,sinx~x。x→∞时,1\/x→0,sin1\/x~1\/x。
xsin1\/x 当x趋近于0时,这个式子是多少
所以当x→0的时候,xsin(1\/x)是无穷小,极限是0。极限思想:现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变...
limx→0 xsin1\/x的极限是什么?
x→0时,1\/x→∞,所以sin1\/x不能等价于1\/x。可以等价的:x→0时,sinx~x。x→∞时,1\/x→0,sin1\/x~1\/x。极限公式:1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1\/2x^2 (x→0)4、1-cos(x^2)~1\/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x...
limx→0 xsin1\/ x的极限是多少?
limx→0 xsin1\/x的极限是当x→0+的时候,x的极限是0,是个无穷小,而sin(1\/x)是有界函数。是x→0的时候,sinx等价于x,不是x→0的时候,sin(1\/x)等价于1\/x当x→0的时候,x和sinx都是无穷小(极限是0),那么有可能成为等价无穷小,当然这两个也的确是等价无穷小。求极限基本方法...
x趋近于0时xsin1\/x的极限是什么?
X趋向于0时,1\/x→∞,而sin(1\/x)是有界函数因此Xsin(1\/X)的极限是0。定义 如果当x→x0(或者x→∞)时,两个函数f(x)与g(x)都趋于零或者趋于无穷大,那么极限lim [f(x)\/g(x)] (x→x0或者x→∞)可能存在,也可能不存在,通常把这种极限称为未定式或者未定型,分别用0\/0和∞\/...
xsin1\/x的极限是什么?
当x→0时,xsin1\/x的极限求解如下:x→0时,1\/x→∞,所以sin1\/x不能等价于1\/x。可以等价的:x→0时,sinx~x。x→∞时,1\/x→0,sin1\/x~1\/x。
极限题:当X趋向于0时,Xsin(1\/X)的极限是?
X趋向于0时,1\/x→∞,而sin(1\/x)是有界函数 因此Xsin(1\/X)的极限是0
x趋于0时求xsⅰn1\/x的极限
limxsin1\/x =limsin1\/x\/(1\/x)=0 因为分子sin1\/x是有界函数,1\/x是无穷大,所以极限是0.
x趋于0时,xsin1\/x的极值
这个是无穷小乘以有界函数.因为sin1\/x是个有界函数,在[-1,1]之间,所以乘以一个趋近0的数,还是=0 极限=0