为什么说阿基里斯追不上乌龟

好快阿

  芝诺是古希腊一个极善于诡辩的哲学家。他的一个众人皆知的“阿基里斯永远追不上乌龟”的诡辩是这样的:阿基里斯是古希腊神话中善跑的英雄。假设乌龟先爬一段路然后阿基里斯去追它。芝诺认为阿基里斯永远追不上乌龟。因为前者在追上后者之前必须首先达到后者的出发点,可是,这时后者又向前爬了一段路了。于是前者又必须赶上这段路,可是这时后者又向前爬了。由于阿基里斯和乌龟之间的距离可依次分成无数小段,因此阿基里斯虽然越追越近,但永远追不上乌龟。显然,这个结论在实践上是错误的,但奇怪的是这一论证在逻辑上似乎没有任何毛病。但用微积分的思想,却可以发现:

  由于这段路程被分成了无数小段,而根据芝诺的推论,在每一个小段里,阿基里斯是永远追不上乌龟的。这显然是正确的。可是,我们可以看到,这无数个小段加起来,阿基里斯就刚好可以追到。这涉及到等比无穷数列问题。如果曲线上的一点沿着曲线趋于无穷远时,该点与某条直线的距离趋于零,则称此直线为曲线的渐近线,曲线与曲线的渐近线是没有交点的,所以,用微积分的思想是不能证明的,除非曲线与曲线的渐近线是有交点的。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-08-09
如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的" 1-0.999...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1-0.999...=0,但1-0.999...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999...=0,或1-0.999...>0"思想。
  有人解释道:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。
  芝诺当然知道阿基里斯能够捉住海龟,跑步者肯定也能跑到终点。
  类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。
  以上初等数学的解决办法,是从结果推往过程的。悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取的再小,整个时间轴仍是由有限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。
  其实这归根到底是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给我们一种好像永远也过不完的印象。但其实根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为无论时间再短也可无限细分。但其实我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,好像永远无穷无尽。但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。
第2个回答  2020-07-16
芝诺是古希腊一个极善于诡辩的哲学家。他的一个众人皆知的“阿基里斯永远追不上乌龟”的诡辩是这样的:阿基里斯是古希腊神话中善跑的英雄。假设乌龟先爬一段路然后阿基里斯去追它。芝诺认为阿基里斯永远追不上乌龟。因为前者在追上后者之前必须首先达到后者的出发点,可是,这时后者又向前爬了一段路了。于是前者又必须赶上这段路,可是这时后者又向前爬了。由于阿基里斯和乌龟之间的距离可依次分成无数小段,因此阿基里斯虽然越追越近,但永远追不上乌龟。显然,这个结论在实践上是错误的,但奇怪的是这一论证在逻辑上似乎没有任何毛病。但用微积分的思想,却可以发现:
由于这段路程被分成了无数小段,而根据芝诺的推论,在每一个小段里,阿基里斯是永远追不上乌龟的。这显然是正确的。可是,我们可以看到,这无数个小段加起来,阿基里斯就刚好可以追到。这涉及到等比无穷数列问题。如果曲线上的一点沿着曲线趋于无穷远时,该点与某条直线的距离趋于零,则称此直线为曲线的渐近线,曲线与曲线的渐近线是没有交点的,所以,用微积分的思想是不能证明的,除非曲线与曲线的渐近线是有交点的。
第3个回答  2018-03-31

首先阿基里斯必须跑到乌龟的出发点,这样,乌龟总是领先阿基里斯一段路。

假设乌龟超前1000米,阿基里斯以百倍与乌龟的速度向前赶,当阿基里斯跑的乌龟的原来位置时,乌龟前进了10米;当阿基里斯跑完这10米距离时,乌龟又前进了1分米;……如此下去,阿基里斯固然可以不断缩短同乌龟的距离,但始终处与乌龟的后面。


这是一个谬论,学了极限之后你就可以证明了。

本回答被网友采纳
第4个回答  2018-09-02
空间和时间不是可以无限分割的,所以有一段时间是最微小的,阿基里斯和乌龟共同前进一个空间单位,然后超过乌龟。

芝诺疑难阿基里斯追不上乌龟
古希腊神话中的英雄阿基里斯以其超凡的奔跑能力闻名,然而,芝诺提出了一种看似悖论的理论,即"阿基里斯追不上乌龟"。这个观念源于"两分法"的思想实验。芝诺认为,无论阿基里斯的速度多么迅猛,都无法赶上乌龟,因为追击的过程中总会存在一个固定的起点差距。设想乌龟领先阿基里斯1000米,阿基里斯的速度是乌龟...

为什么说阿基里斯追不上乌龟
芝诺认为阿基里斯永远追不上乌龟。因为前者在追上后者之前必须首先达到后者的出发点,可是,这时后者又向前爬了一段路了。于是前者又必须赶上这段路,可是这时后者又向前爬了。由于阿基里斯和乌龟之间的距离可依次分成无数小段,因此阿基里斯虽然越追越近,但永远追不上乌龟。显然,这个结论在实践上是错误的...

阿基里斯永远追不上乌龟
通过计算,阿基里斯每次追到乌龟的位置时,乌龟又会前进一点,这个过程看似无限循环,因此芝诺得出阿基里斯永远无法追上乌龟。然而,这个结论忽视了连续性和无限序列的数学概念。实际上,通过数学分析,我们可以证明阿基里斯最终能追上乌龟,尽管过程看似无限。另一个佯谬“飞矢不动”则质疑了箭的运动性。芝诺认...

阿基里斯追不上乌龟是什么意思??
阿基里斯追不上乌龟哲学解释是:关于阿基里斯悖论的一个解释是:阿基里斯的确永远也追不上乌龟。虽然现实中我们知道阿基里斯超越乌龟非常简单,但是它是如何超过乌龟的在过去却一直存在争论。现代物理学已经证明了时间和空间不是可以无限分割的,所以总有最为微小的一个时间里,阿基里斯和乌龟共同前进了一个空间...

为什么说阿基里斯追不上乌龟
芝诺认为阿基里斯永远追不上乌龟。因为前者在追上后者之前必须首先达到后者的出发点,可是,这时后者又向前爬了一段路了。于是前者又必须赶上这段路,可是这时后者又向前爬了。由于阿基里斯和乌龟之间的距离可依次分成无数小段,因此阿基里斯虽然越追越近,但永远追不上乌龟。显然,这个结论在实践上是错误的,但奇怪的是这...

为什么阿基里斯追不上乌龟?
阿基里斯追不上乌龟的原因:实质上,阿基里斯不能够追上乌龟,并不是因为芝诺的逻辑是错误的,而是因为从古至今,人们一直认为空间和时间是无限可分的,物体运动是连续的。如果时间和空间无限可分,那么物体的运动就是绝对连续的。由此看来,“阿基里斯永远都追不上乌龟”的论断是正确的。阿基里斯追不上乌龟...

阿基里斯为什么永远追不上乌龟?这是谬论吗?
意思是,乌龟在阿基里斯前面10步,阿基里斯奔跑速度大于乌龟的爬行速度,二者同时出发,阿基里斯要追上乌龟,必须用一段时间先到达二者连线中点,紧接着到达新的中点,紧接着再达到新的中点,……;因为中点个数无限多,所以所用的时间段尽管不断减小但是总不能走完这些中点,因此阿基里斯就永远追不上乌龟。

阿基里斯与龟悖论解释
阿吉利斯悖论(AchillesParadox)这是由古希腊哲人芝诺(ZenonofEleates)提出的一个经典悖论。阿吉利斯是古希腊神话中善跑如飞的英雄。阿吉利斯悖论就是说如果乌龟先跑让阿吉利斯追赶乌龟,他却永远追不上。因为无论阿基里斯跑得多快,他必须先跑完从他出发的起点到乌龟当下距离的一半,等他赶完这段路程...

阿基里斯那么厉害,为什么还追不上乌龟?
芝诺认为,阿基里斯永远追不上乌龟。他的论证简要说来是这样的。阿基里斯要追上乌龟,首先必须到达乌龟原来的起跑点。可他跑到乌龟的起跑点需要一定时间,因而当他跑到乌龟的起跑点时,乌龟已经前进了一段路了,于是他又必须花一定的时间赶到乌龟的新的所在的点。而当他赶到乌龟新的所在的点时,乌龟又已经...

英雄为什么追不上乌龟?
阿基里斯能够继续逼近乌龟,但他决不可能追上它。小朋友一定会认为,芝诺的话一定有错误的地方:一个跑得快的人怎么可能追不上一只乌龟呢?不过,谁能说出,不对的地方在哪儿吗?从阿基里斯开始追赶乌龟时,阿基里斯和乌龟二者的位置算起,在阿基里斯追赶乌龟的整个过程中,阿基里斯到达了乌龟的新的位置时...

相似回答