为什么气体在高温低压的条件下最接近理想气体?

为什么气体在高温低压的条件下最接近理想气体?低压我可以理解,但为什么高温也会使气体接近接近理想气体?

定义
严格遵从气态方程(PV=(m/M)RT=nRT)的气体,叫做理想气体(Ideal gas)。从微观角度来看是指:分子本身的体积和分子间的作用力都可以忽略不计的气体,称为是理想气体。

扩展
理想气体应该是这样的气体:

1、分子体积与气体体积相比可以忽略不计;

2、分子之间没有相互吸引力;

3、分子之间及分子与器壁之间发生的碰撞不造成动能损失。

说明

1、理想气体又称“完全气体”(perfect gas)。是理论上假想的一种把实际气体性质加以简化的气体。人们把假想的,在任何情况下都严格遵守气体三定律的气体称为理想气体。就是说:一切实际气体并不严格遵循这些定律,只有在温度较高,压强不大时,偏离才不显著。所以一般可认为温度不低于0℃,压强不高于1.01×10^5Pa时的气体为理想气体。

2、理想气体是一种理想化的模型,实际并不存在。实际气体中,凡是本身不易被液化的气体,它们的性质很近似理想气体,其中最接近理想气体的是氢气和氦气。一般气体在压强不太大、温度不太低的条件下,它们的性质也非常接近理想气体。因此常常把实际气体当作理想气体来处理。这样对研究问题,尤其是计算方面可以大大简化。

3、当气体处于高压、低温条件下,它们的状态变化就较显著地偏离气态方程,对方程需要按实际情况加以修正。修正的方法很多,常用的一种修正方程叫做范德瓦耳斯方程。它是以考虑分子间的相互作用以及分子本身的体积为前提,对理想气体状态方程进行修正的。

在各种温度、压强的条件下,其状态皆服从方程pV=nRT的气体。又称完美气体。它是实际气体在压强不断降低情况下的极限,或者说是当压强趋近于零时所有气体的共同特性,即零压时所有实际气体都具有理想气体性质。pV=nRT称为理想气体状态方程,或称理想气体定律。在n、T一定时,则pV=常数,即其压强与体积成反比,这就是波义耳定律(Boyle's law)。若n、p一定,则V/T=常数,即气体体积与其温度成正比,就是盖·吕萨克定律(Gay-Lussac's law)。理想气体在理论上占有重要地位,而在实际工作中可利用它的有关性质与规律作近似计算。

理想气体状态方程式的推导过程
首先对于同样摩尔质量n=1的气体
有三个方程,PV=C1,P/T=C2,V/T=C3
然后三个相乘,有(PV/T)^2=C1*C2*C3
所以PV/T=根号(C1*C2*C3)=C(C为任意常数)
然后取一摩尔的任意气体,测出P,V,T,算出常数C,
例如在0度,即T=273K,此时大气压若为P=P0,则V=22.4 L,
算出 定之为R,然后,当n增大后,保持P、T不变,则V'变为n*V,所以有PV'=P(nV)=nRT

状态方程的应用

1.求平衡态下的参数
2.两平衡状态间参数的计算
3.标准状态与任意状态或密度间的换算
4.气体体积膨胀系数

理想气体对外膨胀可以分为两种情况:一、理想气体周围有其他物体。二、理想气体自由膨胀,即周围没有其他物体。第一种情况下,理想气体做功。第二种情况下,不做功。如果两个容器相连,其中一个容器内充满理想气体,另一个容器内是真空,将两个容器相连后理想气体膨胀充满两个容器,此时,理想气体不做功。一般情况下,如不做特别说明,则认为气体对外膨胀做功。

一般情况下 ,理想气体状态方程的常用形式有两种 :PVT =P′V′T′ ①PV =mμRT②当某种理想气体从一个平衡态变化到另一个平衡态时 ,只要变化前后气体的质量没有增减 ,用①式解题比较方便。当所研究的气体涉及到质量和质量变化问题时 ,用②式求解比较简便。但在教学应用中发现 ,学生普遍对理想气体状态方程 PVT =恒量中“恒量”的物理意义理解不深 ,进而对玻意耳—马略特定律、盖·吕萨克定律、查理定律的认识也欠深刻 ,对一些稍加变形的气态方程问题求解困难。在克服物理教学中这一难点时 ,应从分析气体定律中“恒量”的物理…
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-04-06
理想气体具有如下特点:
1.分子体积与气体体积相比可以忽略不计;
2.分子之间没有相互吸引力;
3.分子之间及分子与器壁之间发生的碰撞不造成动能损失,即只发生弹性碰撞;
4.在容器中,在未碰撞时考虑为作匀速运动,气体分子碰撞时发生速度交换,无动能损失;
5.理想气体的内能是分子动能之和.
那么现在如果我们暂时忽略容器的影响或者假设气体体积为无限大,则很明显要满足性质一需要气体分子浓度极低,即气压很小,分子间相距很远.满足性质二即分子间势能应忽略,同样要求平均距离极远.性质四与具体气体种类等有关,分子运动极快时碰撞过程的内力远大于外力,可以减弱一些其他作用的影响.性质五即要求势能与动能相比可以忽略,而温度越高即分子运动越剧烈,平均动能越大.综上得高温低压时,实际气体具有接近理想气体的性质,因此可以当作理想气体处理.
第2个回答  2019-05-30
造成气体偏离理想气体的原因是气体分子本身存在体积,且分子直接相互碰撞,和与器壁碰撞产生内压强降低有效压强
高温低压下分子间距大,分子碰撞次数少,与理想气体接近
理想气体的定义是分子没有体积且相互之间没有影响的气体
第3个回答  2013-10-31
因为根据普遍化压缩因子图,很明显得到:在任何对比温度下,当对比压力趋于0时,压缩因子趋于1;而在对比压力相同时,对比温度越大,压缩因子偏离1的程度越小,这就说明低压高温气体更接近理想气体。
第4个回答  2008-06-22
因为理想气体是忽略了,气体分子见引力和斥力以及气体分子本身的大小,
而高温低压的条件下气体分子间的距离尽可能的大,大到可以忽略,就纠结理想气体了

为什么气体在高温低压的条件下最接近理想气体?
所以一般可认为温度不低于0℃,压强不高于1.01×10^5Pa时的气体为理想气体。2、理想气体是一种理想化的模型,实际并不存在。实际气体中,凡是本身不易被液化的气体,它们的性质很近似理想气体,其中最接近理想气体的是氢气和氦气。一般气体在压强不太大、温度不太低的条件下,它们的性质也非常接近理想...

为什么高温低压的气体可近似看做理想气体
高温低压的气体,高温-分子平动动能大,低压-分子间距大,分子的势能减小,势能与动能比值很小,计算时分子势能可忽略,这样就接近理想气体了

为什么高温低压的气体更接近理想气体
原因:在各种温度、压强的条件下,其状态皆服从方程pV=nRT的气体称理想气体(ideal gas),是理论上假想的一种把实际气体性质加以简化的气体。人们把假想的,在任何情况下都严格遵守气体三定律的气体称为理想气体。就是说:一切实际气体并不严格遵循这些定律,只有在温度较高,压强不大时,偏离才不显著。...

高温低压时实际气体是否可以当作理想气体来处理?
具体来说,当温度足够高并且压力足够低时,实际气体的行为更接近理想气体。这是因为在这样的条件下,实际气体分子间的相互作用力很小,同时气体分子的数量也较少,因此实际气体的行为就更加接近理想气体的理想行为。然而,需要注意的是,即使是在高温低压的条件下,实际气体也不能完全被视为理想气体,因为实...

为什么是高温低压时,真实气体可以看成理想气体
因为理想气体的限制条件是分子间没有作用力,气体分子没有体积。可以看做无限稀薄的气体。高压时气体分子间的作用力和分子大小不能被忽略。但是高温时只是分子热运动加剧,由于无限稀薄,气体分子间还是很难“见面”,所以分子间作用力还是忽略,温度也不影响分子体积。所以高温低压还可以视作理想气体。可见,...

为什么高温低压的气体与理想气体性质最接近
同样要求平均距离极远.性质四与具体气体种类等有关,分子运动极快时碰撞过程的内力远大于外力,可以减弱一些其他作用的影响.性质五即要求势能与动能相比可以忽略,而温度越高即分子运动越剧烈,平均动能越大.综上得高温低压时,实际气体具有接近理想气体的性质,因此可以当作理想气体处理.

为什么玻意耳定律要求压强不太大温度不太低以及查理
定理成立需要是理想气体,真实气体在低压高温的条件下更为接近理想气体,这种条件也就是分子间力比较小。

理想气体为什么要求温度高压强低
只有在温度较高,压强不大时,偏离才不显著。所以一般可认为温度大于500K或者压强不高于1.01×10^5帕时的气体为理想气体。如果温度过低或者压强过高,就不满足“分子本身的体积和分子间的作用力都可以忽略不计。 ”这个条件。严格遵从气态方程(PV=(m\/M)RT=nRT)(n为物质的量)的气体,叫做理想气体(...

热力学第二定律是如何得到的?
这个公式只适用于理想气体,理想气体是一种理想化的模型,它忽略了气体分子之间的相互作用力和分子本身的体积。在现实中,气体分子之间存在相互作用力,而且分子本身也有一定的体积,但是当气体处于高温和低压的条件下时,这些因素可以忽略不计,因此这个公式在高温和低压的条件下可以近似成立。这个公式中的压强...

理想气体状态方程是什么
低温常压乃至高压条件下,气体分子势能大,气体分子之间距离近导致分子半径不可忽略,使用理想气体状态方程计算的误差会变大。在高温低压下气体分子的状态更加接近于理想气体,所以使用理想气体状态方程的误差比较小而已。因此,理想气体状态方程为什么只适用于高温、低压。今天...

相似回答