不明白19*20/2/2的这一步怎样算出来的
追答因为1+2+……+19 是利用等差数列的求和公式计算的
(首项+末项) x 项数÷2 = 19x20/2
所以
=(1+2+……+19)/2
=19x20/2 /2
...+2\/20)+(3\/4+3\/5…+3\/20)+…+(18\/19+18\/20)+19\/20
=1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+……+(1\/20+2\/20+……+19\/20)=(1+2+……+19)\/2 =95
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/20+2\/20+3\/20+.+19\/20)=?
分母为偶数(2,4,6,8,……,20),例如1\/4+2\/4+3\/4=(4-2)\/2+1\/2=1+1\/2;所有分母为偶数的分数一共有10组,全部相加应该是10*(1\/2)+1+2+3+.+9=5+4*10+5=50所有分母为奇数的分数一共有9组,例如1\/5+2\/5+3\/5+4\/5=(5-1)\/2=...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...(1\/50+2\/50+3\/50+...+49\/50)的简便...
找出通项为(n-1+1)*(n-1)\/2n即为(n-1)\/2 然后用等差公式=49*50\/4=1225\/2
1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)
所以1\/2=(2-1)\/2=1\/2 1\/3+2\/3=(3-1)\/2=2\/2 1\/4+2\/4+3\/4=(4-1)\/2=3\/2 ……1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)=1+1\/2++2\/2+3\/2+4\/2+……+50\/2 =1+(1+2+……+50)\/2 =1+(50*51\/2)\/2 =1+1275\/2 ...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+……+(1\/50+2\/50+3\/50+……+49\/50) 十 ...
原式=1\/2+(1\/3+2\/3)+...+(1+2+...+n-1)\/n =1\/2+(1\/3+2\/3)+...+(n-1)n\/(2n)=1\/2+(1\/3+2\/3)+...+(n-1)\/2 =(1+2+...+49)\/2 =(1+49)*49\/4 =1225\/2;
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/40+2?40+...+38\/40+39\/40)用简 ...
这是一个数列求和问题,每个括号了的分子相加就行了,也就变成了1\/2+2\/2+...+39\/2=390
1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50) 简算
因为(1+2+...+(n-1))\/n=[n(n-1)\/2]\/n=(n-1)\/2 所以1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)=1+1\/2+2\/2+...+49\/2 =1+(1+2+3+...+49)\/2 =1+49*50\/2*1\/2 (1+2+……+n=n(n+1)\/2)=1+1225\/2 =1227\/2 ...
1\/2+1\/(2+3)+1\/(2+3+4)...+1\/(2+3+4...+200) 简便计算
所以1\/(2+3+4+...+n)=2\/[(n-1)(n+2)]=2\/3[(n+2)-(n-1)]\/[(n+2)(n-1)]=2\/3[1\/(n-1)-1\/(n+2)]所以1\/2+1\/(2+3)+1\/(2+3+4)...+1\/(2+3+4...+200)=1\/2+2\/3(1\/2-1\/5+1\/3-1\/6+1\/4-1\/7+1\/5-1\/8+...+1\/196-1\/199+1\/197-1\/2...
计算:1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+3\/5
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/n+2\/n+3\/n+...+(n-1)\/n) n取值2--50 化简为1\/2+(1\/3+1-1\/3)+(1\/4+2\/4+1-1\/4)+...(1\/50+2\/50+3\/50+...24\/50+25\/50+1-24\/50+...+1-3\/50+1-2\/50+1-1\/50)综合分析:当n为偶数时,其各项的和=...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/40+2\/40+...+38\/40+39\/40)
则上面的式子为0\/1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/60+2\/60+3\/60+...+59\/60)观察对于上面的第n项,分子为n(n-1)\/2 分母为n,则第n项f(n)=(n-1)\/2=n\/2-1\/2,那么对于上面60项之和 S(60)=(1\/2-1\/2)+(2\/2-1\/2)+(3\/2-1\/2)+..+(60\/2-1\/2...