这道运筹学单纯形表中的CB、B^(-1)、aj分别指的是C3=-3,C4=0,如图CB就是指原MAX函数中的系数:
例如MAX Z=X1+2X2-3X3,C1就为1,C2为2,C3为-3,aij指原矩阵的系数,例如a11指第一行第一列x的系数,剩余都可见图中单纯形表的列法,先要找到基变量,例如X3,X4为基变量,那C3=-3,C4=0。
函数max函数用于求向量或者矩阵的最大元素,或几个指定值中的最大值。MATLAB等高级编程语言中常用有三种形式:max(A)、max(A,B)、max(A,[],dim)。
函数max函数用于求向量或者矩阵的最大元素,或几个指定值中的最大值。常用有三种形式:
(1)max(A):输入参数A可以是向量或矩阵,若为向量,则返回该向量中所有元素的最大值;若为矩阵,则返回一个行向量,向量中各个元素分别为矩阵各列元素的最大值。
(2)max(A,B):比较A、B中对应元素的大小,A、B可以是矩阵或向量,要求尺寸相同,返回一个A、B中比较大元素组成的矩阵或向量。另外A、B中也可以有一个为标量,返回与该标量比较后得到的矩阵或向量。
(3)max(A,[],dim):返回A中第dim维的最大值。
这道运筹学单纯形表中的CB、B^(-1)、aj分别指的是什么?有加分!
这道运筹学单纯形表中的CB、B^(-1)、aj分别指的是C3=-3,C4=0,如图CB就是指原MAX函数中的系数:例如MAX Z=X1+2X2-3X3,C1就为1,C2为2,C3为-3,aij指原矩阵的系数,例如a11指第一行第一列x的系数,剩余都可见图中单纯形表的列法,先要找到基变量,例如X3,X4为基变量,那C3=-3,C4...
运筹学的单纯形法里cj、aj、zj都是什么??
cj、zj、aij、bi分别是:目标函数中决策变量的系数、目标函数每一步的取值、约束条件中决策变量的系数、约束条件右端的常数取值
运筹学单纯形表B-1(B逆)的问题
B-1指的是当前循环基的逆,即第一次就是初始单纯型表的基,最后一次循环即为最终表的基。初始单纯形表的B-1是通过初始化变换的得到的单位矩阵,如果不经过变换,未必是单位矩阵。如果是单位矩阵,只代表第一次循环的Z=Cb,不影响后面的迭代运算。
...正确理解单纯形乘子定理,1、最优基B是什么,在单纯形表中如何...
1.“迭代后单纯形表基矩阵B的逆矩阵B-1在该单纯形表的位置与初始单纯形表中初始基所在的位置相对应”2.单纯形表的灵敏度分析 迭代次数 基变量 CB X1 X2 S1 S2 S3 b C’1... y= 现在我们用单纯形法求对偶问题的解 3.你是指从当前单纯形表得到原问题和对偶问题的解吗?原问题的解看表的...
运筹学单纯形法中表格里为什么有的是cj-zj
由于检验数不全小于等于0(假设求最大值),故要迭代。先在大于0的检验数里取最大的,对应的那个x就是进基变量,然后用对应的b除以对应的进基变量的系数,取商最小的数,这时商最小的数对应的那个进基变量的系数就是要框起来的。2.框起来有什么用?框起来后在一个表中把这个数字变为1,这一...
在运筹学的对偶问题中,最优基B是什么
最优基指的是线性规划在取得最优解时,其单纯形表中的基,B^-1是指基的逆.
求教!!运筹学中,给出单纯形表初始表和最优表,怎么找出最优基 和最...
而最优基就是最优表中单位阵对应的原约束矩阵的列。可以回想一下线性代数,逆矩阵的求法。其中一种方法就是用单位矩阵和原矩阵一起变化,等原矩阵变成单位阵后,原单位阵就是原矩阵的逆矩阵。在单纯形法中,一开始就构造有单位阵,所以B的逆矩阵,就是原来单位阵变化后的那几个数字。
运筹学里的单纯形表,通常最后一行里有一个-z,是什么含义啊?求解答?
在b的那一列的-z为每一次单纯性表带入所得的目标值的负数,其实这个z没什么必要算,只是为了在每一步变换时看是否朝目标(求最大或最小)接近而已,我认为完全在计算时可以省略,我一般用单纯形表时从来不算这个。而在b那一列其后的-z实际计算的为cj-z,是我们熟悉的检验数,当它全部小于等于0...
运筹学单纯形表中b=0时,最小比值=0,这时取最小比值为零吗?为什么
可以为0,这时是退化解
什么是运筹学
运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案...