跪求数学建模的高手前来解答。。。

大型超市“购物篮”分析
作为超市的经理,经常关心的问题是顾客的购物习惯。他们想知道:“什么商品组或集合顾客多半会在一次购物时同时购买?”。现在假设你们是某超市的市场分析员,已经掌握了该超市近一个星期的所有顾客购买物品的清单和相应商品的价格,需要你们给超市经理一个合理的“购物篮”分析报告,并提供一个促销计划的初步方案。
问题1 附件 1 中的表格数据显示了该超市在一个星期内的 4717个顾客对 999 种商品的购买记录,表格中每一行代表一个顾客的购买记录,数字代表了其购买商品的超市内部编号。试建立一种数学模型,该模型能定量表达超市中多种商品间的关联关系的密切程度。
问题2 根据你们在问题1中建立的模型,寻找一种快速有效的方法能从附件 1 中的购买记录中分析出哪些商品是最频繁被同时购买的。超市经理希望得到尽可能多的商品被频繁同时购买的信息,所以你们找到的最频繁被同时购买的商品数量越多越好。
例如:如果商品 1、商品 2、商品 3 在 4717 个购物记录中同时出现了 200 次,则可以认为这三个商品同时频繁出现了 200 次,商品数量是 3。
问题3 附件 2 给出了这 999 中商品的对应的利润,试根据你们在问题1、问题2中建立的模型,给出一种初步的促销方案,使超市的效益进一步增大。

郭敦顒回答:
建立大型超市“购物篮”分析数学建模,从理论上讲并不困难或者说比较容易,建立矩阵进行对应进行判断就是了。但是999×4717的矩阵并不是普通微机所能承受得了的,所以建立此种矩阵,实际上根本不能实现。怎么办?办法总是有的,那就是优选,是双向、多项优选。
双向优选,是指对4717个顾客,和对999种商品中进行优选;
多项优选,是指对顾客和商品的优选项目中是多项的,以防优选中的偏差,把应选的尽选其中。
对顾客的优选中选购物金额多的,购物数量多的,重复某些商品多的。
对商品的优选中选实现利润高的,购物商品数量多的,重复次数多有周期性的。
固然“最频繁被同时购买的商品数量越多越好”,但是实现利润最大化才是根本所在,往往有不少商品数量大,但并不赚钱,但这又不可或缺,所以要优选出不赚钱的商品与赚钱的商品的最佳匹配。通俗说就是要优选出“人气”,并发现如何培养“人气”。有了“人气”就有了利润。
具体操作你可以自己办,自己建模了,这里仅提供一种思路(赞誉的话就是一种决策)。
温馨提示:内容为网友见解,仅供参考
无其他回答

跪求数学建模的高手前来解答。。。
建立大型超市“购物篮”分析数学建模,从理论上讲并不困难或者说比较容易,建立矩阵进行对应进行判断就是了。但是999×4717的矩阵并不是普通微机所能承受得了的,所以建立此种矩阵,实际上根本不能实现。怎么办?办法总是有的,那就是优选,是双向、多项优选。双向优选,是指对4717个顾客,和对999种商...

数学建模生产计划问题,急急急!!高手帮忙啊,感激不尽!
解答如下:用Mi表示第i种方案机器的数目(0-1变量),Xij表示第i种方案机器用于生产第j种规格线材的时间(单位:千小时)(i=1,2,3,4,5;j=1,2)费用(均以千元为单位)包括:新购及改进设备年折旧费(0.05K),设备年固定费用(F),年运行费用(R),废品损失(L),其中:K=200 M2+10...

一个简单数学建模题!狠请高手指点!感激不尽!
(1)对于真正的等腰三角形,A(x)=A(α,β,γ)=[1-1\/60min(α-β,β-γ)]^2 的值应趋近于1,因此在这四个三角形中,最有可能被判定成等腰三角形应该使A最接近1的,算一下就知道是x2 (2)观察等腰三角形隶属函数的构造可以发现隶属函数有以下几个特征 值域是(0,1],且当α,β,γ满足...

数学建模期末测试题 寻求数学高手帮帮忙
解1:1000\/800=1.25 1200\/800=1.5 所以A每生产1个,C就能生产1.25个,B就能生产1.5个 。因为1*3>2*1.25>1.5*1.5,所以A最好,但是A每天只能生产600个,所以就要用B来补,200*1.25=250个,有250个B件,安排是600个A件,250个B件。 我来做任务的 ...

一道数学建模题,请教高手帮做下
解:设生产甲产品x单位,生产乙产品y单位。则有:2x+y<=10 x+y<=8 0<=y<=7 x>=0总利润w=4x+3y然后用线性规划就可以求出结果了。

数学建模求高手解答不甚感激
车子位置(梯子底端) (x+2,1.5) x是梯子到墙的距离 那么梯子与建筑物触点 (0,y+3) y是与建筑物接触点比墙高出距离 列方程 y \/ 2 = 1.5 \/x y=3\/x 梯子的长度:L = 根号下[ y² +2²+1.5²+ x²]=根号下[x²+(3\/x)²+...

数学建模问题 求高手帮解下
第一问中的玉米,小麦,燕麦种植的英亩数分别为x,y,z;第二问中5块120英亩种植玉米,小麦,燕麦的块数分别为x1,y1,z1,25英亩土地则分别为x2,y2,z2;设玉米,小麦,燕麦分别种植x,y,z英亩,则最大收益Max=400x+200y+250z.(1)约束条件:为获得最大受益,按照上表有,s.t.0=<3x+y+2....

数学建模问题,有高手帮忙解答一下谢谢
1)求距离阵D=(dij)v (2)计算各顶点作为选矿厂的总动力m(vi):m(vi)= ,i=1,2….,v (3)求vk,使得m(vk)= min{m(vi)}1 i v,则vk就是选矿厂应设的矿点,此点称为图g的重心或中位点

请问各位高手一个基本的数学建模问题,本人刚开始学还望赐教
在直角坐标系中可这样表示 假设山的高度为y 最高点y=a,时间为x轴 那么第一天可以表示为起点为(8,0)终点为(17,a)的递增连续的曲线 第二天可以表示为起点是(8,a)终点为(17,0)的递减连续曲线 由于这两条曲线必定相交,即在同一时间经过山上同一位置。

跪求数学建模大神帮忙
假设原油A每天需要X桶 假设原油B每天需要Y桶 原油A得到的产品可以预计的利润=0.2*x*50+0.1*x*70+0.25*x*120 原油B得到的产品可以预计的利润公式自己写了 采购原油A的成本=30*x 采购原油B的成本=40*y X,Y可以得到的原油数量是有限制的。X<=2500 Y<=3000 需求 普通油 0.2*x+0.25*...

相似回答