刚体转动惯量的物理意义

如题所述

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2,
式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。
求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
还有垂直轴定理:垂直轴定理
一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
表达式:Iz=Ix+Iy
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。
转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。
补充对转动惯量的详细解释及其物理意义:
先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
E=(1/2)mv^2 (v^2为v的2次方)
把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)
得到E=(1/2)m(wr)^2
由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,
K=mr^2
得到E=(1/2)Kw^2
K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。
为什么变换一下公式就可以从能量角度分析转动问题呢?
1、E=(1/2)Kw^2本身代表研究对象的运动能量
2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。
3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质
心运动情况。
4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积
分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样)
所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。
若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV
其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。
补充转动惯量的计算公式
转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。
对于杆:
当回转轴过杆的中点并垂直于轴时;J=mL^2/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于轴时:J=mL^2/3
其中m是杆的质量,L是杆的长度。
对与圆柱体:
当回转轴是圆柱体轴线时;J=mr^2/2
其中m是圆柱体的质量,r是圆柱体的半径。
转动惯量定理: M=Jβ
其中M是扭转力矩
J是转动惯量
β是角加速度
例题:
现在已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?
分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L.
根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s
电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2。
所以M=Jβ
=mr^2/2△ω/△t
=ρπr^2hr^2/2△ω/△t
=7.8*10^3 *3.14* 0.04^2 * 0.5 * 0.04^2 /2 * 500/60/0.1
=1.2786133332821888kg/m^2
单位J=kgm^2/s^2=N*m
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-12-03

第2个回答  2013-05-30
类似于平动时的质量,反抗转动
第3个回答  2019-06-29
转动惯量是量度定轴刚体转动惯性的物理量
第4个回答  2013-05-30
我觉的能问这个问题应该是个大学生吧,你可以去翻翻你的大学物理…上面有详细的,

刚体转动惯量的物理意义
刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。补充对转动惯量的详细解释及其物理意义:先说转动惯量的由来,先从动能说起大家都知道动能E=(1\/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)...

转动惯量物理意义
转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流或电量,譬如检流计、冲击电流计等。在...

转动惯量的物理意义
转动惯量的物理意义还可以通过其与质量和质量相对于转轴的分布的关系进行理解。如果用同样的力在两个质量不同的物体上作用,质量大的物体速度变化慢,这是因为质量越大,则惯性越大,即越难改变其平动运动时的运动状态。

刚体转动惯量的物理意义是什么?它与什么因素有关?
转动惯量物理意义是表征物体转动时候的惯性的物理量。转动惯量的大小取决于刚体的密度、几何形状及转轴的位置。对于不同的转轴,物体的转动惯量是不同的,过质心轴的转动惯量最小。

转动惯量有什么重要的物理意义?
转动惯量(也称为惯性矩)和力矩以及角加速度之间存在重要的关系,这关系到了牛顿的第二定律在旋转运动中的应用。1. 转动惯量(\\(I\\)):转动惯量是描述刚体绕特定轴旋转的惯性性质。它与物体的质量分布和轴的位置有关。对于特定轴的刚体,转动惯量越大,它的旋转惯性就越大,需要施加更大的力矩才能...

刚体转动惯量是什么?
转动惯量是表征刚体转动惯性大小、衡量刚体抵抗旋转运动的惯性的物理量。其地位相当于刚体平动中的质量,它与刚体的质量以及质量相对于转轴的分布有关。物理意义 直接理解转动惯量比较抽象,但是我们可以用我们最常见、最直观的质量来做类比。如果我们用同样的力在两个质量不同的物体上作用,质量重的那个物体...

转动惯量的物理意义是什么?影响他的因素有哪些?
转动惯量定义为:J=∑ mi*ri^2 (1)式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。刚体的转动惯量是由质量、质量分布、转轴位置三个因素决定的。 (2) 同一刚体对不同转轴的转动不同,凡是...

转动惯量的物理意义是什么?
转动惯量是描述物体绕某一轴旋转时所具有的惯性的物理量。它与物体的质量分布和旋转轴的位置有关。一般来说,转动惯量越大,物体越难以改变其旋转状态。在实际应用中,转动惯量是一个非常重要的物理量。例如,在机械工程中,我们需要计算机械零件的转动惯量来确定其旋转运动的稳定性和可靠性。在天文学中...

刚体惯性参数中转动惯量、惯性积的物理意义
转动惯量越大说明发动机启动需要越大的扭矩,就像你要花费很多力气挪动某个东西;而惯性积应该是判断是否有对称的中心轴可以去平衡掉转动惯量,找一个合适的轴或者点去让发动机更容易启动。

转动惯量是什么 转动惯量的物理意义
转动惯量的物理意义 转动惯量,是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。转动惯量其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。电磁系...

相似回答