三角形三线共点的性质

求三角形的垂心,内心,重心,外心的性质

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每

条中线都分成定比2:1及中线长度公式,便于解题.

三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.

四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于

一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,

旁心还与三角形的半周长关系密切.

重心定理 三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.
上述交点叫做三角形的重心.
外心定理 三角形的三边的垂直平分线交于一点.
这点叫做三角形的外心.
垂心定理 三角形的三条高交于一点.
这点叫做三角形的垂心.
内心定理 三角形的三内角平分线交于一点.
这点叫做三角形的内心.
旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点.
这点叫做三角形的旁心.三角形有三个旁心.
三角形的重心、外心、垂心、内心、旁心称为三角形的五心.它们都是三角形的重要相关点.
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-05-05
一、三角形重心定理  三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)   重心的性质:   1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。   2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。   3、重心到三角形3个顶点距离的平方和最小。   4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 二、三角形外心定理   三角形外接圆的圆心,叫做三角形的外心。   外心的性质:   1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。   2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。   3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。   4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。   5、外心到三顶点的距离相等 三、三角形垂心定理  三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。   垂心的性质:   1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。   2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))   3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。   4、垂心分每条高线的两部分乘积相等。   定理证明   已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB   证明:   连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE   ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC   ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE   又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB   因此,垂心定理成立! 四、三角形内心定理  三角形内切圆的圆心,叫做三角形的内心。   内心的性质:   1、三角形的三条内角平分线交于一点。该点即为三角形的内心。   2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。   3、P为ΔABC所在平面上任意一点,点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).   4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC 编辑本段五、三角形旁心定理   三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。   旁心的性质:   1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。   2、每个三角形都有三个旁心。   3、旁心到三边的距离相等。   如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。   附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。 编辑本段有关三角形五心的诗歌  三角形五心歌(重外垂内旁)   三角形有五颗心,重外垂内和旁心, 五心性质很重要,认真掌握莫记混.   重 心   三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了,   重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好.   外 心   三角形有六元素,三个内角有三边. 作三边的中垂线,三线相交共一点.   此点定义为外心,用它可作外接圆. 内心外心莫记混,内切外接是关键.   垂 心   三角形上作三高,三高必于垂心交. 高线分割三角形,出现直角三对整,   直角三角形有十二,构成六对相似形, 四点共圆图中有,细心分析可找清.   内 心   三角对应三顶点,角角都有平分线, 三线相交定共点,叫做“内心”有根源;   点至三边均等距,可作三角形内切圆, 此圆圆心称“内心”,如此定义理当然.   五心性质别记混,做起题来真是好。

三角形三线共点的性质
一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.二、重心 三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.三、垂心 三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给...

三线共点证明方法
三线共点证明方法如下:首先要先确定其中两条线的交点,以及这两条线之间的关系,然后再从这种关系推导出第三条线和第三条线相关的关系,如果一致,就可以确定三线共点了。这个典型的比如三角形的外接圆,内切圆。首先说下外接圆,定义是三条边的垂直平分线的交点,首先从两条边的垂直平分线交点引三...

如何证明三角形三条高线交于一点
由ΔAFO2∽ΔADB得:AF\/AO2=AD\/AB,即AF*AB=AO2*AD (2)由ΔAEO1∽ΔADC得:AE\/AO1=AD\/AC,即AE*AC=AO1*AD (3)根据等式(1)(2)(3)有 AO1*AD=AO2*AD,∴AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,∴三角形ABC得三条高交于一点O。

等腰三角形三线合一的性质
等腰三角形三线合一的性质指等腰三角形的底边上的高、中线和顶角平分线互相重合。1、假设△ABC是一个等腰三角形,其中AB=AC。画出底边上的高AD。由于AB=AC,所以∠B=∠C。由于AD是底边上的高,所以∠ADB=∠ADC=90度。因此,我们可以得出△ADB≌△ADC,从而BD=CD,即AD是底边上的中线。2、画出...

怎么证明三角形三线共点
重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。3、重心到三角形3个顶点距离的平方和最小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+...

三点共线有什么性质
三点共线有什么性质 三点共线定理:若oc=λoa+µob,且λ+µ=1,则a、b、c三点共线(与证明无关),在向量中应用是向量加法满足平行四边形法则 与三角形法则,减法则可以转换为加法a-b=a+ (-b)。方法一:取两点确立一条直线,计算该直线的解析式 .代入第三点坐标 看是否满足...

到底什么是三线合一定理
在等腰三角形中(前提)顶角的角平分线,底边的中线,底边的高线,三条线互相重合。简记为三线合一。三线和一定理简单来说就是:顶角的角平分线=底边中线=底边的高线=AD,实际上这三条线都指的是AD。通过三线和一得出的逆定理:① 如果三角形中任一角的角平分线和它所对边的高重合,那么这个三角...

三角形三条中线的交点叫什么,并且有什么性质
三角形重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。5、三角形内到三边距离之积最大的点。

证明三角形三边上的高三线共点
你可以假设不交于一点 则有三个交点P,Q,R 其中A,B,C三点垂足分别为X,Y,Z 易得,A,Y,Q,Z四点共圆 B,C,Y,Z四点共圆 所以角PAY小于角YAQ=角YZQ=角YBC=角YAP 矛盾 所以P,Q,R重合 即三条高线交于一点

如何证明三线共点,用立体几何方法
证明三线共点的步骤就是,先说明两线交于一点,再证明此在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个半面的交线上。三点共线与三线共点的理论:若一条直线上的两点在一个平面内,那么这条直线在此半面内。例如,在...

相似回答