这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]�6�1g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx�6�1(nlnx)'=x^n�6�1n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)�6�1lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
自己上网去查吧,很多啊
温馨提示:内容为网友见解,仅供参考
高等数学求导公式有哪些?
1、C′=0 (C为常数)2、(x∧n)′=nx∧(n-1)3、(sinx)′=cosx 4、(cosx)′=-sinx 5、(lnx)′=1\/x 6、(e∧x)′=e∧x 7、(logaX)=1\/(xlna)8、(a∧x)=(a∧x)*lna 9、(u±v)′=u′±v′10、(uv)′=u′v+uv′11、(u\/v)′=(u′v-uv′)\/v 12、(f(g(x)...
高等数学求导公式
高等数学求导公式如下:高数求导公式是sinx=cosx、cosx=-sinx、tanx=secx。1、当函数y=fx的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'x0或dfx0\/dx。2、导数运算法则是由基本函数的和、差、积、...
高等数学的求导公式
求导公式 c'=0(c为常数)(x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1\/(xlna),a>0且 a≠1 (lnx)'=1\/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)'=1\/√...
高等数学求导公式
解:原式=2n\/[(n+4)(n+5)]=2n\/(n+4)-2n\/(n+5)=10\/(n+5)-8\/(n+4)一阶导数:-10\/(n+5)^2+8\/(n+4)^2 二阶导数:10*2!\/(n+5)^3-8*2!\/(n+4)^3 n阶导数公式:(-1)^n*n!*[10\/(n+5)^(n+1)-8\/(n+4)^(n+1)]...
高等数学求导公式表
高等数学求导公式如下:1.y=c,y'=0(c为常数)2.y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。3.y=a^x,y'=a^xlna;y=e^x,y'=e^x。4.y=logax,y'=1\/(xlna)资料拓展:高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、察慧几何以及简单...
高等数学 大一需要了解的求导公式 及求不定积分公式
求导公式 (x^a)'=ax^(a-1)(a^x)'=a^xlna (logax)'=1\/(x*lna)(sinx)'=cosx (cosx)'=-sinx (uv)'=uv'+u'v (u+v)'=u'+v'(u\/v)'=(u'v-uv')\/v^2 积分公式 1)∫0dx=c 2)∫x^udx=(x^(u+1))\/(u+1)+c 3)∫1\/xdx=ln|x|+c 4))∫a^xdx=(a^x)...
求高等数学所有的求导公式!
在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]�6�1g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u\/v,y'=u'v-uv'\/v^2 3.y=f(x)的反函数是x=g(y),则有y'=1\/x'证:1.显而易见,y=c是一条...
求导公式大全高等数学
导数公式1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae\/xy=lnx y=1\/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1\/cos^2x8.y=cotx y=-1\/sin^2x运算法则减法法则:(f(x)-g(x))=f(x)-g(x)加法法则:(f(x)...
求高等数学的所有公式。
y=arcsinxy'=1\/√1-x^210.y=arccosxy'=-1\/√1-x^211.y=arctanxy'=1\/1 x^212.y=arccotxy'=-1\/1 x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u\/v,y'...
高数,求导
原式=f'(x)e^(∫g(x)dx)+f(x)g(x)e^(∫g(x)dx)