具有N个结点的平衡二叉树的深度一定不小于logn对么?为什么

如题所述

节点的满二叉树深度为log2(n+1),同节点数的平衡二插树绝对大雨等于这个数,所以是正确的吧,呵呵
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-10-07
证:设N[h]表示高度为h的AVL树最少含有的节点数,则显而易见地,N[1]=1,N[2]=2,并且N[h]=N[h-1]+N[h-2]+1(N>2),因为高为h的话,必然有一颗子树高为h-1,由于平衡性质,另一颗至少高度为h-2。
对于最后的二阶差分方程,通过代换来齐次化(N[h]+1)=(N[h-1]+1)+(N[h-2]+1),即得到Fibonacci数列,特征方程x^2-x-1=0,利用初值F[0]=0;F[1]=1求出系数,得到F[n]=(alpha^n-beta^n)/sqrt(5),其中alpha=(1+sqrt(5))/2,beta=(1-sqrt(5))/2。
则对应地N[h]=F[h+2]-1。
F[n]与alpha^n/sqrt(5)是同阶无穷大。因为
lim(F[n]/(alpha^n/sqrt(5)))=lim(1+((1-sqrt(5))/(1+sqrt(5)))^n)
=lim(1+(-1)^n*((sqrt(5)-1)/(sqrt(5)+1))^n)=lim(1+(-1)^n*0)=1
所以N[h]约等于alpha^(h+2)/sqrt(5)-1。
对应得,h可表示为sqrt(5)*log(N+1)-2。
即,N个点的AVL树,最大深度可表示为O(logN)。

严格的数学证明如上,无奈输入的符号看着较乱,望见谅。追问

证明我提的问题是对的?

追答

最后一句“N个点的AVL树,最大深度可表示为O(logN)”

因此,是不大于……,你的结论写反了吧。
平衡树的优点就在于,树不会很高,不会退化。
如果是不小于的话,这个有点就完全没有了。

追问

喔喔 知道啦 谢谢你

还想问你题

本回答被提问者和网友采纳
相似回答