设x=e^(-t),变换方程(x^2)*d^2y/dx^2+x*dy/dx+y=0
答案是d^x/dt^2+y=0
求解啊~~
设x=e^(-t),变换方程x^2*d^2y\/dx^2+x*dy\/dx+y=0
x * dy\/dx = - dy\/dt, x² * d²y\/dx² = dy\/dt + d²y\/dt²代入原方程,得:d²y\/dt² + y= 0
d²y\/dx²+2dy\/dx+y=e∧x
x * dy\/dx = - dy\/dt,x² * d²y\/dx² = dy\/dt + d²y\/dt²代入原方程,得:d²y\/dt² + y= 0
设x=e^(-t) 试变换方程x^2 d^2y\/dx^2 +xdy\/dx+y=0
所以x^2 d^2y\/dx^2= d^2y\/dt^2 +dy\/dt,而xdy\/dx= -dy\/dt,于是原方程可以变换为:d^2y\/dt^2 +y=0
设x=e^(-t) 试变换方程x^2 d^2y\/dx^2 +xdy\/dx+y=0
-e^t dy\/dt](-e^t)=e^(2t)d^2y\/dt^2 +e^(2t)dy\/dt 所以x^2 d^2y\/dx^2= d^2y\/dt^2 +dy\/dt,而xdy\/dx= -dy\/dt,于是原方程可以变换为:d^2y\/dt^2 +y=0
x=e^(-t);y=te^t 则d^2y\/dx^2=
x=e^(-t);y=te^t所以dx\/dt=-e^(-t)dy\/dt=e^t+te^tdy\/dx=(1+t)e^t\/(-e^(-t))=-(1+t)e^2td(dy\/dx)\/dt=-e^(2t)-2(1+t)e^2t=-(2t+3)e^2t所以d^2y\/dx^2=【-(2t+3)e^2t】\/【-e^(-t)】=(2t+3)e^3t ...
x=e^(-t);y=te^t 则d^2y\/dx^2=
x=e^(-t);y=te^t所以dx\/dt=-e^(-t)dy\/dt=e^t+te^tdy\/dx=(1+t)e^t\/(-e^(-t))=-(1+t)e^2td(dy\/dx)\/dt=-e^(2t)-2(1+t)e^2t=-(2t+3)e^2t所以d^2y\/dx^2=【-(2t+3)e^2t】\/【-e^(-t)】=(2t+3)e^3t ...
微分方程求解答谢谢
令x=e^t,则t=lnx,dt\/dx=1\/x dy\/dx=dy\/dt*dt\/dx=(1\/x)*dy\/dt d^2y\/dx^2=d(dy\/dx)\/dx=d[(1\/x)*dy\/dt]\/dt*dt\/dx=(1\/x^2)*(d^2y\/dt^2-dy\/dt)代入原方程 d^2y\/dt^2-3dy\/dt+2y=1 特征方程r^2-3r+2=0,r1=1,r2=2 齐次方程的通解为y$=C1*e^t+C2*e...
...试将方程 x^2d^2y\/dx^2+2x^2(tany)(dy\/dx)^2+xdy\/dx-sinycosy=0 化...
du=(secy)^2dy=[1+(tany)^2]dy=(1+u^2)dy,dy=du\/(1+u^2), dx=e^tdt.dy\/dx=1\/[e^t(1+u^2)]du\/dt,d^2y\/dx^2=d(dy\/dx)\/(e^tdt)=(d^2u\/dt^2-du\/dt)\/[e^(2t)(1+u^2)]-2u(du\/dt)^2\/[e^(2t)(1+u^2)^2].sinycosy=sin(2y)\/2=tany\/[1+...
y=f(lnx) 求(d^2y)\/(dx^2)
dy\/dx = 2xf'(x^2)d^2y\/dx^2 = d(2xf'(x^2))\/dx = 2f'(x^2)+ 4x^2f''(x^2)这些都是套用复合函数导数公式而已,lz应该能自己搞出来 求采纳为满意回答。
...^t ,dy\/dx=dy\/xdt .分析变换具体步骤 d^2y\/dx^2=(d^2y\/dt^2-dy\/...
x=e^t ,dy\/dx=dy\/xdt dt\/dx=1\/x