什么是测度

thanks

一、在数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。

测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。

二、质量控制术语:一个实体的质量好坏是需要测量的,而测量就需要首先建立质量指标体系或质量模型,然后使用特定测量方法才能实施测量。测度的运用是建立测量方法的依据,也是解决软件质量测量的关键。

三、汉字解释:意思为猜测,揣度,料想。

扩展资料

测度问题

测度问题是测度论中的著名问题。

对于直线而论,人们总希望直线上某个测度,关于它可测的集合越多越好。可测集多,意味着可测函数多,从而可积函数也多。对于平面或高维空间的情形也是这样。

所谓测度问题,就是(直线上)是否存在具有下列性质的测度:

1、具有可列可加性;

2、(直线上的)所有子集都可测;

3、具有平移不变性;

4、[0,1]的测度是1。

参考资料来源:百度百科-测度 (汉语词语)

参考资料来源:百度百科-测度 (数学术语)

参考资料来源:百度百科-测度(质量控制术语)

参考资料来源:百度百科-测度问题

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-09-23
测度理论是实变函数论的基础。

所谓测度,通俗的讲就是测量几何区域的尺度。 我们知道直线上的闭区间的测度就是通常的线段长度; 平面上一个闭圆盘 的测度就是它的面积。

对于更一般的集合,我们能不能定义测度呢? 比如直线上所有有理数构成的集合,它的测度怎么衡量呢?

一个简单的办法, 就是先在每个有理点上找一个开区间覆盖它,就好比给它带个“帽子”。因为有理数集是可列集(就是可以排像自然一样排好队,一个个数出来,也叫可数集,见集合论),所以我们可以让第n个有理数上盖的开区间长度是第一个有理数(比方是1)上盖的开区间长度的2^n分之一。 这样所有那些开区间的长度之和是个有限值(就是1上的开区间长度的2倍)。

现在我们让1上的开区间逐渐缩小趋向于一个点,那么所有区间的总长度也相应缩小,趋向于长度0。 这样我们就说有理数集的测度是0。 用上面这种方法定义的测度也叫外测度。

一个几何区域有了测度,我们就可以定义上面的函数的积分,这是推广的黎曼积分。

比如实数上的狄利克雷函数D(x)=1(如果x是有理数),0(如果x是无理数)。 如果按照通常的理解,我们发现狄利克雷函数在整个数轴上的定积分不存在;但是按照上面讲的有理数的测度,我们就可以求出它的定积分是0。

参考资料:http://baike.baidu.com/view/751580.html

本回答被提问者采纳
第2个回答  2007-08-13
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。

形式上说,一个测度 μ(详细的说法是可列可加的正测度)是个函数,它在 X 上的一个 σ 代数 A 上定义,于扩充区间 [0, ∞]中取值,并且满足以下性质:

* 空集的测度为零:

μ(空集) = 0 。

* 可数可加性,或称 σ 可加性:若 E_1,E_2,…为 A 中两两不交集合的可数序列,则所有 E_i 的并集的测度,等于每个 E_i 的测度之总和:

μ(∪_{i=1}^∞ E_i) = ∑{i=1}^∞ μ(E_i)。

这样的三元组(X,A,μ)称为一个测度空间,而 A 中的元素称为这个空间中的可测集。

参考资料:http://zh.wikipedia.org/wiki/%E6%B5%8B%E5%BA%A6http://en.wikipedia.org/wiki/Measure_%28mathematics%29

第3个回答  2012-10-14
测度
汉语意义
读音:cèduó

[conjecture;estimate;infer]

猜测,揣度,料想。 南朝 宋 谢灵运 《入华子冈是麻源第三谷》诗:“险迳无测度,天路非术阡。” 宋 王禹偁 《答张扶书》:“天地毕矣,何难测度哉!” 冰心 《寄小读者》六:“大人的思想,竟是极高深奥妙的,不是我们所能测度的。”
第4个回答  2007-08-21
就是一些点连起来的长度 如果有长度的话。大多数都有长度的。有限个或者可数个点连起来长度总是0。像[0,1]中所有有理数点连起来长度是0,所有无理数连起来长度是1。

什么是测度
测度是一种数学函数,用于描述集合或对象的“大小”或“程度”。在更广泛的意义上,它可以用来衡量某种现象或事物的数量或规模。例如,在几何学中,我们可以使用测度来衡量物体的长度、面积或体积。在概率论中,测度被用来描述随机事件发生的可能性大小。二、测度的性质和功能 测度具有一些重要的性质和功能。

什么是测度
一、在数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度...

测度是什么意思?
测度是指对某一物体或现象进行度量或衡量的过程。测度可以通过各种方式进行,比如使用工具、观察、问卷调查等等。测量的结果是为了了解某些事情的特点,以便更好地进行分析和决策。测量在科学研究、医学、工程、财务等领域中都有很重要的应用。正确的测量需要严格的操作规范,应该遵循科学的原则,准确地记录和...

测度是什么意思
测度是指对一个事物进行量化的衡量或评估的过程。以下是详细的解释:一、测度的基本概念 在日常生活和科学研究中,我们经常需要对各种事物进行量化评估。无论是长度、面积、体积等物理量,还是数量、比例、速度等抽象概念,都需要通过一定的方法进行测量和评估。这个过程就是所谓的“测度”。简单来说,测度...

测度是什么意思
测度意思是猜测,揣度,料想。出处:1、《汉书·王商传》:“今商有不仁之性,乃因怨以内女,其奸谋未可测度。”2、南朝·宋·谢灵运《入华子冈是麻源第三谷》:“险迳无测度,天路非术阡。”测度造句:1、从政处理实际事务的时候,揣摩测度,刻意的让事情的处理归复于大道,然而这其中有很多事情...

什么是测度——一些常见的测度
1. **计数测度**:基础且简单,一个集合的“大小”就是其元素的数量,适用于可数集。例如,集合 [公式] 的计数测度是 [公式],其中 [公式] 是集合的基数。2. **狄拉克测度**:基于元素存在与否,测度一个集合是否包含特定元素,是一个概率测度。3. **博雷尔测度**:在拓扑空间上,由开集或...

测度是什么
测度是指用于量化某一特定对象的量或规模大小的一种方式或手段。具体而言,测度通常涉及的是测量或者量化的过程。以下是关于测度的详细解释:定义与概述 在统计学、数学和许多其他领域中,测度是一种重要的工具。它允许我们对各种现象进行量化分析,以便更好地理解其本质和规律。简单来说,当我们想要了解某...

什么是测度
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。测度论是实分析的一个分支,研究对象有σ代数、测度、可测...

测度是什么意思 近义词
测度的意思: [cèduó] 推测;揣度:她的想法难以~。根据风向~,今天不会下雨。测度百科解释: [conjecture;estimate;infer]南朝宋谢灵运《入华子冈是麻源第三谷》诗:“险迳无测度,天路非术阡。”宋王禹偁《答张扶书》:“天地毕矣,何难测度哉!”冰心《寄小读者》六:“大人的思想,...

什么是测度——一些常见的测度
2. 狄拉克测度:这是一把更为微妙的测度,它依据元素的存在与否,如同概率的影子,是概率测度家族中的重要成员。狄拉克测度在衡量特殊元素的重要性时,显示了测度理论的灵活性。3. 博雷尔测度:拓扑空间的建筑师,博雷尔测度由开集构建,它在局部有限性上有着独特的性质。欧几里得空间中的勒贝格测度,即...

相似回答