1+1/(1+2)+1/(1+2+3)+......+1/(1+2+3+4+5+......+2002+2003)=? ?=

如题所述

解:1+1/(1+2)+1/(1+2+3)+......+1/(1+2+3+4+5+......+2002+2003)
=2/1*2+2/2*3+2/3*4+...+2/2003*2004
=2(1-1/2+1/2-1/3+...+1/2003-1/2004)
=2(1-1/2004)
=2003/1002
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-10-10

1+1/(1+2)+1/(1+2+3)+......+1/(1+2+3+4+5+......+2002+2003)

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+4+5+...+2002+2003)=? ?=_百度...
解:1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+4+5+...+2002+2003)=2\/1*2+2\/2*3+2\/3*4+...+2\/2003*2004 =2(1-1\/2+1\/2-1\/3+...+1\/2003-1\/2004)=2(1-1\/2004)=2003\/1002

1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4+...+2004)
首先分析得知,分子都是1,分母则是一个等差数列的前n项和,一共是2004项求和,设A1=1,An=1\/(n*(1+n)\/2)=2\/(n*(n+1))=2\/n-2\/(n+1),1+1/(1+2)+1/(1+2+3)...1\/(1+2+3+4+...+2004)=(2\/1-2\/2)+(2\/2-2\/3)+(2\/3-2\/4)+...+(2\/2004-2\/2005)=2...

1+1\/(1+2)+1\/(1+2+3)+...+1\/1+2+3+...+2004=?
1+2+3+4=4*5\/2 1+2+3+……+2004=2004*2005\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(2004*2005)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(2004*2005)〕...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3...+2006)
3:1+2+3 4:1+2+3+4 很明显,当第n个式子时:n:1+2+3+4+···+n =n(n+1)\/2 1:1\/1 2:1\/(1+2)3:1\/(1+2+3)4:1\/ (1+2+3+4)很明显,当第n个式子时:n:1\/(1+2+3+4+···+n)=1\/[n(n+1)\/2]=2\/n(n+1)则原式=1+1\/(1+2)+1\/(1+2+3)+1\/...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急...
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+2010)=
第n个分数的分母,为:1+2+。。。+n=n(n+1)\/2 那么第n个分数就是2\/[n*(n+1)]1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+2010)=2\/(1*2)+2\/(2*3)+...+2\/(2010*2011)=2*(1-1\/2)+2*(1\/2-1\/3)+...+2*(1\/2010-1\/2011)=2*(1-1\/2+1\/2-1\/3*1...

1\/(1+2) +1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算...
整个运算的每两个加号之间的为一个项,则总共有2008个项,其普通式为An,接下来我们先计算An的普通式,因为括弧里为分母,分母的普通式为n(n+1)\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有...

1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+2008)=?
这道题说起来很费力气哦……先按照等差数列求和的公式(即S=1\/2*(a1+an)*d,其中a几表示第几项,d表示公差)把原式的分子部分化成1\/2*(1+2)*2,1\/2*(1+3)*3,1\/2*(1+4)*4……到最后一项是1\/2*(1+2008)*2008,然后把1\/2与分母相乘,可以把原式化成2*1\/(2*3)+...

数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...

相似回答
大家正在搜