1+1/(1+2)+1/(1+2+3)+......+1/1+2+3+......+2004=?

如题所述

因为:
1+2=2*3/2
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+2004=2004*2005/2
所以,
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+2006)
=1+2/(2*3)+2/(3*4)+2/(4*5)+……+2/(2004*2005)
=2[(1/2+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(2004*2005)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(2004*2005)=1/2004-1/2005
所以,
原式=2(1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/2004-1/2005)
=2(1-1/2005)
=2*2004/2005
=4008/2005
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-07-03
设第n项是An
An=1/(1+2+...+n)=2/n(n+1)=2/n-2/(n+1)
那么
1+1/(1+2)+1/(1+2+3)+......+1/1+2+3+......+2004
=A1+A2+...+A2004
=2/1-2/2+2/2-2/3+...+2/2004-2/2005
=2-2/2005
=4008/2005
第2个回答  2008-07-03
1/(1+……+n)=2/(1+n)n=2[1/n-1/(n+1)]
于是原式=1+2(1/2-1/3)+……+2(1/2004-1/2005)
=1+2(1/2-1/3+1/3-1/4+……+1/2204-1/2005)
=1+2(1/2-1/2005)
=4008/2005

1+1\/(1+2)+1\/(1+2+3)+...+1\/1+2+3+...+2004=?
1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+2004=2004*2005\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(2004*2005)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1...

1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4+...+2004)
首先分析得知,分子都是1,分母则是一个等差数列的前n项和,一共是2004项求和,设A1=1,An=1\/(n*(1+n)\/2)=2\/(n*(n+1))=2\/n-2\/(n+1),1+1/(1+2)+1/(1+2+3)...1\/(1+2+3+4+...+2004)=(2\/1-2\/2)+(2\/2-2\/3)+(2\/3-2\/4)+...+(2\/2004-2\/2005)=2...

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+4+5+...+2002+2003)=? ?=_百度...
解:1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+4+5+...+2002+2003)=2\/1*2+2\/2*3+2\/3*4+...+2\/2003*2004 =2(1-1\/2+1\/2-1\/3+...+1\/2003-1\/2004)=2(1-1\/2004)=2003\/1002

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3...+2006)
3:1+2+3 4:1+2+3+4 很明显,当第n个式子时:n:1+2+3+4+···+n =n(n+1)\/2 1:1\/1 2:1\/(1+2)3:1\/(1+2+3)4:1\/ (1+2+3+4)很明显,当第n个式子时:n:1\/(1+2+3+4+···+n)=1\/[n(n+1)\/2]=2\/n(n+1)则原式=1+1\/(1+2)+1\/(1+2+3)+1...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急...
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...

1\/(1+2) +1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算...
整个运算的每两个加号之间的为一个项,则总共有2008个项,其普通式为An,接下来我们先计算An的普通式,因为括弧里为分母,分母的普通式为n(n+1)\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有...

数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
注意观察,第 N 个加式可以表述成:1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) ...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...+100)=?
解:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...+100)=2\/(1×2)+2\/(2×3)+2\/(3×4)+...+2\/(100×101)=2×[(1-1\/2)+(1\/2-1\/3)+...+(1\/100-1\/101)]=2×(1-1\/101)=2×100\/101 =200\/101 类似:1\/[a*(a+n)]=(1\/n)*[1\/a-...

相似回答