第1个回答 2019-12-31
1
第一章 有理数
【课标要求】
考点 知识点
知识与技能目标
了解 理解 掌握 灵活应用
有
理
数
有理数及有理数的意义 ∨
相反数和绝对值 ∨
有理数的运算 ∨
解释大数 ∨
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数
是一一对应的。
2.相反数实数 a 的相反数是- a ;若a与b互为相反数,则有 a+b=0,
反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且
到原点的距离相等。
3.倒数:若两个数的积等于 1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的
相反数,0的绝对值是 0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离 .
5.科学记数法: ,其中 。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算
不一定能行,如负数不能开偶次方。 实数的运算基础是有理数运算, 有理数的
一切运算性质和运算律都适用于实数运算。 正确的确定运算结果的符号和灵活
的使用运算律是掌握好实数运算的关键。
【能力训练】
一、选择题。
1. 下列说法正确的个数是 ( )
①一个有理数不是整数就是分数 ②一个有理数不是正数就是负
数
③一个整数不是正的, 就是负的 ④一个分数不是正的, 就是负的
A 1 B 2 C 3 D 4
2. a,b是有理数,它们在数轴上的对应点的位置如下图所示:
2
把a,-a,b,-b 按照从小到大的顺序排列 ( )
A -b<-a<a<b B -a <-b<a<b C -b <a<-a<b D -b <b<
-a<a
3. 下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是
负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的
反而小
A ①② B ①③ C ①②③ D ①②③④
4.下列运算正确的是 ( )
A B -7-2×5=-9×5=-
45
C 3÷ D -(-3)
2 =-9
5.若a+b<0,ab<0,则 ( )
A a>0,b>0 B a<0,b<0
C a,b 两数一正一负,且正数的绝对值大于负数的绝对值
D a,b 两数一正一负,且负数的绝对值大于正数的绝对值
6.某粮店出售的三种品牌的面粉袋上分别标有质量为 (25±0.1)kg,(25
±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最
多相差 ( )
A 0.8kg B 0.6kg C 0.5kg D 0.4kg
7.一根 1m长的小棒,第一次截去它的 ,第二次截去剩下的 ,如此
截下去,第五次后剩下的小棒的长度是 ( )
A ( )
5 m B [1
-( )
5 ]m C (
)
5 m D [1
-( )
5 ]m
8.若ab≠0,则 的取值不可能是 ( )
3
A 0 B 1 C 2 D -2
二、填空题。
9.比 大而比 小的所有整数的和为 。
10.若 那么2a一定是 。
11.若0<a<1,则a,a
2 ,
的大小关系是 。
12.多伦多与北京的时间差为 –12 小时(正数表示同一时刻比北京时间早的
时数),如果北京时间是 10月1日14:00,那么多伦多时间是 。
13上海浦东磁悬浮铁路全长 30km,单程运行时间约为 8min,那么磁悬浮列车
的平均速度用科学记数法表示约为 m /min。
14.规定a﹡b=5a+2b-1,则(-4)﹡6的值为 。
15.已知 =3, =2,且ab<0,则a-b= 。
16.已知a=25,b= -3, 则a
99 +b 100
的末位数字是 。
三、计算题。
17.
18. 8 -2×3
2 -(-2×3) 2
19.
20.[-3
8 -(-1) 7 +(-3) 8 ]×[-
5
3 ]
4
21. –1
2
× (-3)
2 -(-
)
2003 ×(-2) 2002 ÷
22. –1
6 -(0.5-
)÷ ×[-2-(-3)
3 ]-∣
-0.5
2 ∣
四、解答题。
23. 已知 1+2+3+, +31+32+33==17×33,求 1-3+2-6+3-9+4-12+ ,
+31-93+32-96+33-99 的值。
24.在数1,2,3,,,50前添“+”或“-”,并求它们的和,所得结果的
最小非负数是多少?请列出算式解答。
25.某检修小组从 A地出发,在东西向的马路上检修线路, 如果规定向东行驶
为正,向西行驶为负,一天中七次行驶纪录如下。(单位: km)
第一次 第二次 第三次 第四次 第五次 第六次 第七次
-4 +7 -9 +8 +6 -5 -2
(1) 求收工时距 A地多远?
(2) 在第 次纪录时距 A地最远。
(3) 若每km耗油0.3升,问共耗油多少升?
26.如果有理数 a,b 满足∣ab-2∣+(1-b)
2
=0,试求
+,+ 的值。
参考答案:
一、选择题: 1-8:BCADDBCB
5
二、填空题:
9.-3; 10.非正数; 11. ; 12.2:00; 13.3.625
×10
6 ;
14.-9; 15.5或-5; 16.6
三、计算题17.-9; 18.-45; 19. ; 20. ; 21. ;
22.
四、解答题:23.-2×17×33; 24.0; 25.(1)1(2)五(3)
12.3; 26.
第二章 一元一次方程
【课标要求】
考点 课标要求 知识与技能目标
了解 理解 掌握
灵活
应用
一元
一次
方程
了解方程、一元一次方程以及方程有解的概念 ∨
会解一元一次方程,并能灵活应用 ∨ ∨ ∨
会列一元一次方程解应用题,并能根据问题的实
际意义检验所得结果是否合理。
∨ ∨ ∨
【知识梳理】
1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进
行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得
方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二
元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方
程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程 ax=b在不同条件下解的各种情况,并能进行简单应用 :
(1)a≠0时,方程有唯一解 x= ;
6
(2)a=0,b=0时,方程有无数个解;
(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图
示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和
处理信息,解应用题时还要注意检查结果是否符合实际意义。
【能力训练】
一、填空题(本题共 20分,每小题 4分):
1. x = 时,代数式 与代数式 的差为0;
2. x =3是方程4 x -3( a - x )=6 x -7( a - x )的解,那么 a = ;
3. x =9 是方程 的解,那么 ,当 1时,方程的解 ;
4.若是2 ab
2 c 3x-1
与-5 ab
2 c 6x+3
是同类项,则 x = ;
5. x = 是方程| k |( x +2)=3 x 的解,那么 k = .
二、解下列方程(本题 50分,每小题 10分):
1.2{3[4(5 x -1)-8]-20}-7=1;
2. =1;
3. x -2[ x -3( x +4)-5]=3{2 x -[ x -8( x -4)]}-2;
4. ;
5. .
7
三解下列应用问题(本题 30分,每小题 10分):
1.用两架掘土机掘土 ,第一架掘土机比第二架掘土机每小时多掘土 40 m
3 , 第一架工作
16
小时,第二架工作 24小时,共掘土8640 m
3 ,问每架掘土机每小时可以掘土多少
m
3 ?
2.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的 ,乙
厂出甲丙两厂和的 ,已知丙厂出了 16000元.问这所厂办学校总经费是多少, 甲乙两厂
各出了多少元?
3.一条山路,从山下到山顶,走了1小时还差 1km,从山顶到山下,用50分钟可以走完.已
知下山速度是上山速度的 1.5倍,问下山速度和上山速度各是多少,单程山路有多少 km.
参考答案:
一、填空题: 1.9; 2. ; 3. 或 ; 4. x = ; 5. ;
二、解方程: 1. x =1; 2. ; 3. x =6; 4. ; 5.
三、应用题:
1.第一架掘土机每小时掘土 240立方米,第二架掘土机每小时掘土 200 m
3
2.总经费 42000元,甲厂出 12000元,乙厂出 14000元
3.上山速度为每小时 4 km,下山速度为每小时 6 km,单程山路为 5 km.
第三章 图形认识初步
【课标要求】
考点 课标要求
知识与技能目标
了解 理解 掌握 灵活应用
线段
线段的定义、中点 ∨ ∨
线段的比较、度量 ∨
8
线段公理 ∨ ∨
直线
直线公理,垂线性质 ∨
对顶角的性质 ∨
平行线的性质、判定 ∨ ∨
射线
射线的定义 ∨ ∨
射线的性质 ∨ ∨
【知识梳理】
1.点、线、面:通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,
屏幕上的画面是由点组成的)。
2.角
①通过丰富的实例,进一步认识角。
②会比较角的大小,能估计一个角的大小,会计算角度的和与差,识别度分、秒,会进
行简单换算。
③了解角平分线及其性质。
【能力训练】
一、填空题
1、 如图,图中共有线段 _____条,若 是 中点, 是 中点,
⑴若 , , _________;
⑵若 , , _________。
2、 不在同一直线上的四点最多能确定 条直线。
3、 2:35时钟面上时针与分针的夹角为 ______________。
4、 如图,在 的内部从 引出3条射线,那么图中共有 _______个角;如果引出 5
条射线,有_______个角;如果引出 条射线,有_______个角。
5、 ⑴ ;⑵ 。
二、选择题
1、 对于直线 ,线段 ,射线 ,在下列各图中能相交的是( )
9
2、 如果 与 互补, 与 互余,则 与 的关系是( )
、 = 、 、 、以上都不对
3、 为直线 外一点, 为 上三点,且 ,那么下列说法错误的是
( )
、 三条线段中 最短 、线段 叫做点 到直线 的距离
、线段 是点 到 的距离 、线段 的长度是点 到 的距离
4、 如图, , ,点B、O、D在同一直线上,则 的度数为( )
、 、 、 、
5、 在海上,灯塔位于一艘船的北偏东 40度方向,那么这艘船位于这个灯塔的 ( )
、南偏西 50度方向 、南偏西40度方向
、北偏东 50度方向 、北偏东 40度方向
三、作图并分析
1、⑴在图上过 点画出直线 、直线 的垂线;
⑵在图上过 点画出直线 的垂线,过 点画出直线 的垂线。
10
2、如图,⑴过点 画直线 ∥ ;
⑵连结 ;
⑶过 画 的垂线,垂足为 ;
⑷过点 画 的垂线,垂足为 ;
⑸量出 到 的距离≈______(厘米)(精确到 厘米)
量出 到 的距离≈______(厘米)(精确到 厘米)
⑹由⑸知 到 的距离______ 到 的距离(填“<”或“=”或“>”)
四、解答题:
1、 如图,AD= DB, E是BC的中点,BE= AC=2cm,线段DE的长,求线段DE的长.
2、 如图,运动会上一名服务的同学要往返于百米起跑点 A、终点记时处 B(A、B位于
东西方向)及检录处 C,他在A处看C点位于北偏东 60°方向上,在 B处看C点位于西北
方向(即北偏西 45°)上。
(1)确定检录处 C的位置;
(2)现限定只用刻度尺作为工具,如果想知道这位同学在检录处 C与百米起跑点 A之间
11
往返一次要走多少米(不考虑其他因素),你有什么办法?(要求:只写出一种办法,不需具
体计算)
解:
参考答案:
一、填空题:
1.10、4、1; 2.6; 3.132.5°; 4.10、21、 ;
5.23.5、44、52
二、选择题 1-5:BCDCB 四、解答题: 1.DE=6;
第四章 数据的收集与整理
江苏省赣榆县沙河中学 张庆华
【课标要求】
考点 课标要求
知识与技能目标
了解 理解 掌握 灵活
应用
数据的收集整理
与分析
会 用 扇 形 统 计 图 表 示 数
据
∨
理解频数、频率的概念 ∨
了解频率分布的意义和作用 ∨
会列频数分布表,画频数分布直方图和频数
折 线
图
∨
能解决简单的实际问题 ∨
【能力训练】
一、选择题
1.近年来国内生产总值年增长率的变化情况如图所示 .从图上看,下列结论中不正确的是
( ).
12
A.1995 ~1999年,国内生产总值的年增长率逐年减小 ;
B.2000 年国内生产总值的年增长率开始回升 ;
C. 这7年中,每年的国内生产总值不断增长 ;
D. 这7年中,每年的国内生产总值不断减小 .
2.武汉市某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报
告进行了评比.下图是将某年级 66篇学生调查报告进行整理 ,?分成5组画出的频数分布直方
图.已知从左到右 5个小长方形的高的比为 1:3:7:6:3, 那么在这次评比中被评为优秀的调查
报告有(分别大于或等于 80分为优秀,且分数为整数 )( ).
A.18篇 B.24 篇 C.25 篇 D.27 篇
3.星期天晚饭后,小红从家里出去散步 ,?右图描述了她散步过程中离家的距离 s(米)与散
步所用时间 t(分)之间的函数关系 .依据图象,下面描述符合小红散步情景的是 ( ).
A. 从家出发,到了一个公共阅报栏 ,看了一会儿报,就回家了;
13
B. 从家出发,到了一个公共阅报栏 ,看了一会儿报后 ,继续向前走了一段 ,然后回家了.
C. 从家出发,一直散步(没有停留),然后回家了;
D. 从家出发,散了一会儿步 ,就找同学去了 ,18分钟后才开始返回 .
4.某校为了了解学生的身体素质情况 ,对初三(2)班的50?名学生进行了立定跳远、铅球、
100米三个项目的测试 ,每个项目满分为 10分.如图,是将该班学生所得的三项成绩 (成绩均
为整数)之和进行整理后 ,分成5组画出的频率分布直方图 ,已知从左到右前 4个小组的频率
分别为0.02,0.1,0.12,0.46. 下列说法:①学生的成绩≥ 27分的共有 15人;②学生成绩的众
数在第四小组 (22.5~26.5)内;③学生成绩的中位数在第四小组 (22.5~26.5)范围内.其中
正确的说法是 ( ).
A.①② B. ②③ C. ①③ D. ①②③
二、填空题
1.现有A、B两个班级,每个班级各有 45名学生参加一次测验 .?每名参加者可获得
0,1,2,3,4,5,6,7,8,9 分这几种不同的分值中的一种 .测试结果 A?班的成绩如下表所示 ,B班
的成绩如图所示 .
A班
分数 0 1 2 3 4 5 6 7 8 9
人数 1 3 5 7 6 8 6 4 3 2
(1)由观察所得,_____班的标准差较大 ;
14
(2)若两班合计共有 60人及格,问参加者最少获 _______分才可以及格.
2.在相同条件下 ,对30辆同一型号的汽车进行耗油 1?升所走路程的试验 ,根据测得的数据
画出频率分布直方图如图 .
则本次试验中,耗油1升所行走的路程在 13.?05?~13.?55km?范围内的汽车共有 _____
辆.
3.2003年,在我国内地发生了“非典型肺炎”疫情 ,?在党和政府的正确领导下 ,目前疫
情已得到有效控制 ,下图是今年 5月1日至5月14日的内地新增确诊病例数据走势图 (数据
来源:卫生部每日疫情通报 ).
中国内地非典新增确诊病例数据走势图
(截止到2003年5月14日上午10时)
从图中,可知道:
(1)5 月6日新增确诊病例人数为 ________人;
(2) 在5月9日至5月11日三天中,共新增确诊病例人数为 ______人;
(3)从图上可看出,5月上半月新增确诊病例总体呈 _______趋势.
4.在世界环境日到来之际 ,希望中学开展了“环境与人类生存” 主题研讨活动 ,活动之一
是对我们的生存环境进行社会调查 ,并对学生的调查报告进行评比 .初三.(3)班将本班 50篇
学生调查报告得分进行整理 (成绩均为整数 ),列出了频率分布表 ,并画出了频率分布直方图
15
(部分)如下:
分组 频率
49.5~59.5 0.04
59.5~69.5 0.04
69.5~79.5 0.16
79.5~89.5 0.34
89.5~99.5 0.42
合计 1
根据以上信息回答下列问题 :
(1) 该班90分以上(含90分)的调查报告共有 ________篇;
(2) 该班被评为优秀等级 (80分及80分以上)的调查报告占_________%;
(3)补全频率分布直方图 .
三、解答题
1.为了让学生了解环保知识 ,增强环保意识 ,?某中学举行了一次“环保知识竞赛” ,共有
900名学生参加了这次竞赛 .为了解本次竞赛成绩情况 ,从中抽取了部分学生的成绩 (得分取
正整数,满分为100分)进行统计.?请你根据下面尚未完成并有局部污损的频率分布表和频
率分布直方图 ,解答下列问题:
频率分布表
分组 频数 频率
16
50.5~60.5 4 0.08
60.5~70.5 8 0.16
70.5~80.5 10 0.20
80.5~90.5 16 0.32
90.5~100.5
合计
(1)填充频率分布表中的空格 ;
(2) 初全频率分布直方图 ;
(3) 在该问题中的样本容量是多少 ?
答:_________________.
(4) 全体参赛学生中 ,竞赛成绩落在哪组范围内的人数最多 ?(不要求说明理由 ).
答:________________.
(5) 若成绩在 90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人 ?
答:________________.
2.新安商厦对销售较大的 A、B、C三种品牌的洗衣粉进行了问卷调查 ,发放问卷270份(问
卷由单选和多选题组成 ).对收回的 238份问卷进行了整理 ,?部分数据如下 :
一、最近一次购买各品牌洗衣粉用户的比例 (如图).
二、用户对各品牌洗衣粉满意情况汇总表 :
内容 质量 广告 价格
品牌 A B C A B C A B C
满意的户数 194 121 117 163 172 107 98 96 100
根据上述信息回答下列问题 :
(1)A 品牌洗衣粉的主要竞争优势是什么 ?你是怎样看出来的 ?
(2) 广告对用户选择品牌有影响吗 ?请简要说明理由 .
17
(3)你对厂家有何建议 ?
参考答案:
一、选择题: 1-4:DDBD
二、填空题:1.A班,5;2.12;3.138,-49,下降;4.21,76,略
三、解答题:1.12,0.24,50,1,50,80。.5-90.5,216
2.质量占 40.69%,没有太大的影响,建议厂家以质量为准绳。