函数y=sin^2x+sinxcosx的最小正周期?

如题所述

y=sin^2x+sinxcosx
=(1+cos2x)/2+(sin2x)/2
=(1/2)sin2x+(1/2)cos2x+1/2
=(√2/2)sin(2x+π/4)+1/2
T=2π/2=π
温馨提示:内容为网友见解,仅供参考
无其他回答

函数y=sin^2x+sinxcosx的最小正周期?
y=sin^2x+sinxcosx =(1+cos2x)\/2+(sin2x)\/2 =(1\/2)sin2x+(1\/2)cos2x+1\/2 =(√2\/2)sin(2x+π\/4)+1\/2 T=2π\/2=π

求函数y=sinxcosx+sin⊃2;x的最小正周期 单调区间
y=1\/2(2sinxcosx)+(1-cos2x)\/2=(sin2x)\/2-(cos2x)\/2+1\/2=(√2)\/2 [(√2)\/2 sin2x - (√2)\/2 cos2x ]+1\/2=(√2)\/2 [cos(π\/4)sin2x - sin(π\/4)cos2x ]+1\/2=(√2)\/2 sin(2x-π\/4)+1\/2所以最小正周期T=2π\/2=π单调增区间为[-π\/8 +kπ ,3π...

函数f(x)=sin^2x+sinxcosx的最小值和最大值分别为
∴当sin(2x-π\/4)=-1时 f(x)min=(1-√2)\/2 当sin(2x-π\/4)=1时 f(x)max=(1+√2)\/2

已知函数(x)=sinx ^2+sinxcos求其最小正周期
∴sin²x=½﹙1-cos2χ﹚又sinxcosx=½sin2x f(x)=sinx ^2+sinxcosx =½﹙1-cos2χ﹚ +½sin2x =½sin2x-½cos2χ+½=√2/2sin﹙2x-π/4﹚+½∴其最小正周期2π/2=π ∵0≤x≤π\/2 ∴-π/4≦2x-π/4≦3π...

sin平方x+sinxcosx的最小正周期怎么求
y=sin平方x+sinxcosx =(1-cos2x)\/2+1\/2sin2x =1\/2sin2x-1\/2cos2x+1\/2 =根号2\/2(根号2\/2*sin2x-根号2\/2*cos2x)+1\/2 =根号2\/2(cosπ\/4*sin2x-sinπ\/4*cos2x)+1\/2 =根号2\/2*sin(2x-π\/4)+1\/2 最小正周期T=2π\/2=π ...

y=cos^2X+sinXcosX的最大值、最小值和最小正周期
∵y =(cosx)^2+sinxcosx=(1\/2)(1+cos2x)+(1\/2)sin2x =1\/2+(1\/2)(cos2x+sin2x)=1\/2+(1\/√2)[cos2xcos(π\/4)+sin2xsin(π\/4)]=1\/2+(√2\/2)cos(2x-π\/4),∴函数的最大值是(1+√2)\/2,最小值是(1-√2)\/2,最小正周期是π...

函数f(x)=sin2x+sinxcosx的最小值与最大值分别为
解析:原式=sin2x+sinxcosx=+sin2x=sin2x-cos2x+=sin(2x-)+,其最大值为1+=.答案:●典例剖析 化简cos(π+α)+cos(π-α)(k∈Z).剖析:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos[kπ-(+α)].解:原式=cos[kπ+(+α)]+cos[kπ-(+α)]=2coskπcos(+α...

已知函数y=sin²x+sinxcosx (1)求该函数的最小正周期 (2)当0≤x...
y=sin2x+sinxcosx=(1-cos2x)\/2 + 1\/2sin(2x)=1\/2+1\/2(sin2x - cos2x)=1\/2+√2\/2(√2\/2sin2x - √2\/2cos2x)=1\/2+√2\/2sin(2x-π\/4)(1)最小正周期T=2π\/2=π (2)当0≤x≤π\/2 设t=2x-π\/4∈[-π\/4,3π\/4]y=1\/2+√2\/2sin(t) ∈[0,(1+√2)...

f(x)=(sinX)^2+cosxsinx的最大值与最小正周期
f(x)=(sinX)^2+cosxsinx =(1-cos2x)\/2 +sin2x \/2 =1\/2+(sin2x-cos2x)\/2 =0.5 + 0.5 *√2 sin( 2x -π\/4)所以最大值为0.5 + 0.5 *√2 最小正周期为π

y=sin^2x+2sinxcosx 的最小正周期
y=sin^2x+2sinxcosx =(1-cos2x)\/2+sin2x =1\/2-1\/2cos2x+sin2x 所以 周期为:T=2π\/w=2π\/2=π.

相似回答