证明sin(2a+b)\/sina-2cos(a+b)=sinb\/sina
=[sin(a+b)*cosa-cos(a+b)sina]\/sina =sin(a+b-a)\/sina =sinb\/sina =右边 所以结论成立.逆推法:sin(2a+b)\/sina-2cos(a+b)=sinb\/sina sin(a+a+b)-2cos(a+b)sina=sinb sinacos(a+b)+cosasin(a+b)-2cos(a+b)sina=sinb cosasin(a+b)-cos(a+b)sina=sinb sin(a+b-...
求证:sin(2a+β)\/sina-2cos(a+β)=sinβ\/sina
sin(2a+b)=sin2acosb+cos2asinb=2sinacosacosb+(1-2sin�0�5a)sinb 2cos(a+b)=2cosacosb-2sinasinb 代入原式得:2cosacosb+sinb\/sina-2sinasinb-2cosacosb+2sinasinb=sinb\/sina 即:sin(2a+b)\/sina-2cos(a+b)=sinb\/sina 就是把sin(2a+b)和2cos(a+b)展开...
sin(2a+b)\/sina - 2cos(a+b)
sin(2a+b)\/sina - 2cos(a+b)=[sina*cos(a+b)+sin(a+b)*cosa-2cos(a+b)*sina]\/sina=[sin(a+b)*cosa- cos(a+b)*sina]\/sina=sin(a+b-a)\/sina=sinb\/sina
帮帮忙吧 时间 证明sin(2α+β)\/sinα-2cos(α+β)=sinβ\/sin
=【sinacos(a+b)+cosasin(a+b)】\/sina-2cos(a+b)=-cos(a+b)+【cosa sin(a+b)】\/sina 通分 =【-sinacos(a+b)+cosasin(a+b)】\/sina =sin(a-a-b)\/sina =sinb\/sina
一道关于三角函数的证明题...
下面用a和b代替 即证明sin(2a+b)-2sinacos(a+b)=sinb sin(2a+b)=sin[a+(a+b)]=sinacos(a+b)+cosasin(a+b)所以sin(2a+b)-2sinacos(a+b)=sinacos(a+b)+cosasin(a+b)-2sinacos(a+b)=-sinacos(a+b)+cosasin(a+b)=sin[(a+b)-a]=sinb 所以sin(2a+b)-2sinacos(a...
sin(A+B)-sinA=2cos(A+B\/2)*sinB\/2怎么推导?
推导过程如下:sin(A+B)-sinA =sin [(A+B\/2)+ B\/2]-sin[(A+B\/2)- B\/2]=[sin(A+B\/2)cos B\/2+cos(A+B\/2)sin B\/2]-[ sin(A+B\/2)cos B\/2-cos(A+B\/2)sin B\/2]=2 cos(A+B\/2)sin B\/2
三角函数和差化积公式怎么推的?sinA-sinB=2cos(a+b)\/2sin(a-b)\/2...
这样,得到了积化和差的四个公式:sinαcosβ=[sin(α+β)+sin(α-β)]\/2 cosαsinβ=[sin(α+β)-sin(α-β)]\/2 cosαcosβ=[cos(α+β)+cos(α-β)]\/2 sinαsinβ=-[cos(α+β)-cos(α-β)]\/2 有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四...
求解一道化简题 sin(2A-B)\/sinA-2cos(A-B)
=sin[a+(a-b)]\/sina-2cos(a-b)=[sinAcos(a-b)+cosAsin(a-b)]\/sina-2cos(a-b)=-cos(a-b)+cosAsin(a-b)\/sina =[sin(a-b)cosA-cos(A-B)siaA]\/sinA =sin(a-b-a)\/sinA =-sinB\/sinA
证明sina-sinb=2sin(a-b)\/2cos(a+b)\/2
由正弦定理知a\/sinA=b\/sinB,所以有tanA\/tanB=(sinA)^2\/(sinB)^2,lsinA,sinB不等于0,所以有cosB\/cosA=sinA\/sinB,所以有sin2A=sin2B,化简得cos(A+B)sin(A-B)=0[这里用到的是和差化积公式,sina+sinb=2sin[(a+b)\/2]cos[(a-b)\/2],sina-sinb=2cos[(a+b)\/2]sin[(a-b)\/2]...
sin(A+B)-sinA=2cos(A+B\/2)*sinB\/2怎么推导?
sin(A+B)-sinA=sin [(A+B\/2)+ B\/2]-sin[(A+B\/2)- B\/2]=[sin(A+B\/2)cos B\/2+cos(A+B\/2)sin B\/2]-[ sin(A+B\/2)cos B\/2-cos(A+B\/2)sin B\/2]=2 cos(A+B\/2)sin B\/2.∴原式成立.