数学高中:定义数列如下:a1=2,an+1=an²-an+1,n∈N*。求证:(I)对于n...
an+1-an=an²-2an+1=(an-1)²必然是》0 容易证明,当该数列中任意一项an=1时,an+1必然也是1,an+2也必然是1 那么,对于任意一项an>1时,an+1>an>1,则an+1必然>1,可推得an+2也必然>1 因为题目初始给出a1=2,因此任意an一定比2大,所以an-1必然不为0 所以(an-1)...
已知数列{an}满足a1=2,an+1=an-1\/an+1(n属于N),则a20=
a5=2...因为a5=a1,可见数列是周期为4次的环.所以 a20=a4=-3
已知数列an中,满足a1=2,an+1
1\/a(n+1)= (an+2)\/(2an)= 1\/2 + 1\/an 1\/a(n+1)-1\/an = 1\/2 => {1\/an} 是等差数列, d=1\/2 1\/an -1\/a1 =(n-1)\/2 1\/an =n\/2 an = 2\/n
设a1=a2=1,an+1=an+an-1,n=2,3…令xn=an+1\/an,证明数列xn收敛于
由于丨(√5+1)\/(1-√5)丨>1,当n无穷大时,后面一项趋近于0,因此x<n>收敛于1\/2(√5+1)
a1=a2=1, an+1=an+an-1, n=2,3,... xn= an+1\/an. 证明数列{xn}收敛...
a(n+1) = an+a(n-1)a(n+1)\/an = 1+ a(n-1)\/an a(n+1)\/an - 1\/[an\/a(n-1)] = 1 {a(n+1)\/an} 是递减 |a(n+1)\/an| <1 => lim(n-> ∞) a(n+1)\/an =L exists L = 1+ 1\/L L^2-L-1 =0 L = (1\/2)( 1+√5)
已知数列{an}满足关系式a1=1\/2,an+1=2an\/1+an(n属于N),猜想数列{an}的...
1\/a1 -1=1\/(1\/2) -1=1 数列{1\/an -1}是以1为首项,1\/2为公比的等比数列。1\/an -1=1×(1\/2)^(n-1)=1\/2^(n-1)1\/an=1 +1\/2^(n-1)=[2^(n-1) +1]\/2^(n-1)=(2ⁿ+2)\/2ⁿan=2ⁿ\/(2ⁿ+2)n=1时,a1=2\/(2+2)=1\/2,同样满足...
设a1=2,an+1=1\/2(an+1\/an),n=1,2,... 证明lim n趋向于正无穷an_百度知...
a1=2>1,所以1\/a1<1<a1,an+1=1\/2(an+1\/an)≥1,an+1=1\/2(an+1\/an)<1\/2(an+an)=an,an在1与2之间有界收敛,故存在极限,且可得极限为1。数学归纳法,证明a_n单调递减,并且有界。所以存在极限,再两边n。趋向于正无穷an,得到lim n趋向于正无穷an=1。求极限基本方法有:1、...
数列中a1=2,an+1=3an-1\/an+1求an的通项公式。
an=(n+3)\/(n+1)猜想归纳,并验证 或标准法 a(n+1)-1=[(3an-1)\/(an+1)]-1=2(an-1)\/(an+1)倒过来得1\/[a(n+1)-1]=[1\/(an-1)]+1\/2 于是1\/(an-1)=[1\/(a1-1)]+(n-1)\/2=(n+1)\/2 于是an-1=2\/(n+1),得an=(n+3)\/(n+1)...
数列an中,已知a1=2,a(n+1)=1\/2(a1+a2+...+an),则其前n项和为
(1)an = (1\/2)(a1+a2+...+a(n-1)) (2)(1)-(2)a(n+1) -an = (1\/2)an a(n+1) = (3\/2)an {an}是等比数列, q= 3\/2 an = (3\/2)^(n-1) .a1 = 2.(3\/2)^(n-1)Sn = a1+a2+...+an = 6( 1- (2\/3)^n )...
已知在数列{an}中,a1=2,an+1=4an-3n+1,n∈N.(1)证明:...
a1=2,an+1=4an-3n+1,∴an+1-(n+1)=4(an-n),∴ an+1-(n+1)an-n =4,∴数列{an-n}是等比数列.(2)解:∵a1=2,a1-1=1,an+1-(n+1)an-n =4,∴an-n=1×4n-1,∴an=n+4n-1.∴Sn= n(n+1)2 + 1-4n 1-4 = n(n+1)2 + 4n-1 3 .