一会采纳,再帮忙做一道
等差数列{an}中,a1,a2,a3……a8满足aa(n+1)-2an=0,a1>0则a1+S8-S7与3a4的大小关系
a1+S8-S7=a1+a8
a8-2a7=0
a8=2a7
同理a7=2a6
a6=2a5
a5=2a4
所以a8=16a4
因为a1>0,所以a2。。a.8>0
所以a1+S8-S7=a1+a8=a1+16a4>3a4
感觉题目有点问题
按你的题目解的
如有不明白,可以追问!!
谢谢采纳!
已知数列{an}中,若a1+2a2+3a3+…+nan=n(n+1)(n+2)则 an=
所以a1+2a2+3a3+。。。(n-1)a(n-1)=(n-1)n(n+1)所以两式相减 nan=n(n+1)(n+2)-(n-1)n(n+1)an=(n+1)(n+2)-(n-1)(n+1)=n^2+3n+2-n^2+1=3n+3 如有不明白,可以追问!!谢谢采纳!
已知数列{an}满足a1+2a2+3a3+…nan=n(n+1)(n+2),则数列{an}的通项公...
∵a1+2a2+3a3+…+nan=n(n+1)(n+2),①∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),②①-②,得nan=3n(n+1),∴an=3n+3(n≥2)∵n=1时,a1=1×2×3=6,满足上式∴an=3n+3故答案为:an=3n+3 ...
在数列{an}(n为小写)中,若a1+2a2+3a3+…nan=n(n+1)(n+2),求an
a1+2a2+3a3+…+(n-1)a(n-1)=(n-1)[(n-1)+1][(n-1)+2]相减 nan=n(n+1)(n+2)-(n-1)[(n-1)+1][(n-1)+2]=3n(n+1)所以an=3n+3 参考资料:http:\/\/zhidao.baidu.com\/question\/220457713.html
已知数列{an}满足a1+a2+a3+…+nan=n(n+1)(n+2),则{an}的通项公式为an=...
a1+2a2+3a3+...+(n-1)a(n-1)=(n-1)n(n+1)nan-(n-1)a(n-1)=3n(n+1)nan=(n-1)a(n-1)+3n(n+1)n(an+xn²+yn+z)=(n-1)(a(n-1)+x(n-1)²+y(n-1)+z)nan+xn³+yn²+zn=(n-1)a(n-1)+x(n³-3n²+3n+1)+y(n&...
已知数列an满足a1+2a2+3a3+……nan=n(n+1)(n+2)求an
数列nan的前n项和为n(n+1)(n+2),根据sn求an ,会否
数列{an}满足a1+2a2+3a3+...+nan=n(n+1)(n+2),求数列{an}的前n项和Sn...
n+1)*(n+2),则:a1+2a2+3a3+...+(n-1)×an-1=n(n-1)*(n+1),两式相减:nan=n(n+1)*(n+2)-n(n-1)*(n+1),得 an=3n+3 所以:a1+a2+a3+...+an=3*(1+2+3+...+n)+3n=3*n(n+1)\/2+3n 整理得前n项和为:a1+a2+a3+...+an=3n(n+3)\/2 ...
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)\/2)a(n+1)(n∈N*)
由a1 = 1,a1 + 2a2 + 3a3 + ... + nan = ((n + 1) \/ 2)a(n + 1) (*)(*)式取n = 1 得 a2 = 1 当k ≥ 3时 [(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] \/ 2 整理得 a(n + 1) \/ an = ...
已知数列{an}中,a1=1,a1+2a2+3a3+……+nan=(n+1)\/2*an+1 求数列{an}...
其实是这样的:这题答案是 a(1)=a(2)=1,a(n)=2\/n*3^(n-2)我简要地说一下 对于题目的等式,变量分别取n和n-1得两个式子,相减化简得到a(n)\/a(n-1)=(n-2)\/(n-1).注意到a(1)=a(2)=1,a(3)=2,a(3)\/a(2)是满足此条件的起始项,然后累乘就得到想要的答案,注意项数 ...
已知数列an满足a1+a2+a3+……+nan=n(n+1)(n+2),则它的前n项和sn=
a1+2a2+3a3+...+nan=n(n+1)(n+2)a1+2a2+3a3+...+(n-1)a(n-1)=(n-1)n(n+1)两式相减得nan=n(n+1)(n+2)-(n-1)n(n+1),即an=(n+1)(n+2)-(n-1)(n+1),an=3n+3,这是个等差数列,公差为3,首项为6.所以前n项和Sn=n(6+3n+3)\/2=(3n^2+9n)\/2.
已知数列{an} a1=1 a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
解:a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1) ① a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an ② 由①-②得nan=(n+1)\/2 * a(n+1) -n\/2 *an n\/2 *an=(n+1)\/2 *a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2...