∫e^(x^2)dx=

如题所述

此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。

所以最终的结果是 ∫e^(x^2)dx=1/2 âˆšÏ€ erfi(x) + C

注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值 。

拓展资料:

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

温馨提示:内容为网友见解,仅供参考
第1个回答  2023-01-27
∫e^(x^2)dx 是一个超越积分
也就是非初等函数积分
即积分的原函数不能用初等函数来表示
比如类似sinx/x,cosx/x,sinx²,cosx²等等式子
都是不能积分得到初等函数的
这里可以进行的类似计算就是
∫(0到∞)e^(-x²)dx的积分
而且使用的也是不同的方法
记I=∫e^(-x²) dx
同样I=∫e^(-y²) dy
于是二者相乘得到
I²=∫∫e^-(x²+y²) dxdy
此时将x,y换成 极坐标
得到I²=∫∫r * e^-r² drdθ
而θ的范围是0到π/2,r的范围就是0到r
显然∫r * e^-r² dr
= -1/2 *e^-r²
代入上下限正无穷和0
就等于1/2
于是I²=π/4
开根号之后解得此积分
I=√π /2

∫e^(x^2)dx=
此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。所以最终的结果是 ∫e^(x^2)dx=1\/2 √π erfi(x) + C 注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值 。

定积分∫e^(x^2)dx是什么?
此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。结果∫e^(x^2)dx=1\/2 √π erfi(x) + C。注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值。定积分一般定理:定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(...

求解∫e^(x^2)dx,谢谢。
此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。结果 ∫e^(x^2)dx=1\/2 √π erfi(x) + C 注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值 。如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个...

∫e^(x^2) dx的积分表达式是什么?
∫xe^(x^2)dx=0.5∫e^(x^2)d(x^2)=0.5e^(x^2)+C。记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不...

∫e^(X^2) dx怎么积分?
∫e^(X^2)dx =(1\/2)∫e^(X^2)dX^2 令x^2=t =(1\/2)∫e^tdt =(e^t)\/2 =[e^(X^2)]\/2

不定积分∫e^( x^2) dx是什么意思?
∫e^(x^2)dx=xe^(x^2)-∫xe^(x^2)dx=xe^(x^2)-1\/2∫e^(x^2)dx^2=xe^(x^2)-1\/2e^(x^2)+c=(x-1\/2)e^(x^2)+c。如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至...

为什么∫e^(x^2)dx是黎曼积分
x^2)dx^2 =xe^(x^2)-1\/2e^(x^2)+c =(x-1\/2)e^(x^2)+c 对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

∫e^(x^2)=?
∫e^(x^2)dx 不能用初等函数表示

e的x平方积分怎么求呢?
1. 首先,将 e 的 x 平方积分表示为 ∫e^(x^2) dx。2. 由于 e^(x^2) 没有一个简单的原函数表达式,这个积分不能直接用基本的积分公式求解。3. 这个积分被称为高斯函数或误差函数,通常表示为 erf(x)。因此,e 的 x 平方积分可以用误差函数表示为 ∫e^(x^2) dx = √π * erf(x...

求积分∫e^(X^2)dx
这个函数的不定积分不是初等函数来的,我用MATLAB 试了一下 syms x y y=exp(x^2);f=int(y,x)得到 f =-(pi^(1\/2)*i*erf(i*x))\/2 后面的erf就是一个内部函数。

相似回答
大家正在搜