这是数学极限问题,假设lim(x趋于0)[(sin6x+xf(x))/x^3]=0,则lim(x趋于0)[(6+f(x))/x^2]=?,请详细点,谢了

如题所述

求两个式子相减的极限
即化简得lim(sin6x-6x)/x³
然后多次利用洛必达法则即可得极限为-36
再根据极限的四则运算可得
所求极限为36追问

lim(sin6x-6x)/x³怎么来的?

追答

lim(sin6x+xf(x))/x³-(6+f(x))/x²

温馨提示:内容为网友见解,仅供参考
第1个回答  2011-12-04
由洛必达法则可知:lim(x趋于0)[(sin6x+xf(x))/x^3]=lim(x趋于0)[(6+f(x))/x^2]。所以原式=0

若极限lim(x-0)[sin6x+xf(x)]\/x^3=0,则lim(x-0)[6+f(x)]\/x^2=?
简单计算一下即可,答案如图所示

lim(x趋近于0)[sin6x+xf(x)]\/x^3=0,则lim(x趋近于0)[6+f(x)]\/x^2=?
,lim(x趋近于0)[sin6x+xf(x)]\/x^3=0,则知道f(x) 是低天X^2的。所以(6+F(X))是低于X^2的。从而 lim(x趋近于0)[6+f(x)]\/x^2=0.

lim(x趋近于0)[sin6x+xf(x)]\/x^3=0,则lim(x趋近于0)[6+f(x)]\/x^2=...
lim(x趋近于0)[6+f(x)]\/x^2=lim(x趋近于0)6\/x^2+lim(x趋近于0)f(x)\/x^2=lim(x趋近于0)sin6x\/x^3+lim(x趋近于0)xf(x)\/x^3=lim(x趋近于0)[sin6x+xf(x)]\/x^3=0.

若limx趋近于0,(sin6x+xf(x))\/x^3=0,求limx趋近于0,(6+f(x))\/x^2...
lim x→0,[sin6x + xf(x)]\/x³=0+α,其中lim x→0,α=0 即f(x)\/x² = -sin6x\/x³ + α 从而lim x→0,[6+f(x)]\/x²=lim x→0,( 6\/x² - sin6x\/x³ + α )=lim x→0,(6x-sin6x)\/x³,用洛必达法则 =lim x→0,[...

已知{limx趋近0 [(sin6x)+xf(x)]\/x^3}=0 求limx趋近0 [6+f(x)]\/x^...
f有二阶导数吧?条件要写全了,否则很难做题的。Taylor展式最简单,sin6x=6x-(6x)^3\/6+小o(x^3),xf(x)=x(f(0)+f'(0)x+f''(0)\/2x^2+小o(x^2))=xf(0)+x^2f'(0)+0.5x^3f''(0)+小o(x^3),于是由条件知 f(0)+6=0,f'(0)=0,.-36+0.5f''(0)=0,f(0...

lim x→0 [sin6x+xf(x)]\/x^3=0, 求 lim x→0 [6+f(x)]\/x^2
因为lim x→0 [sin6x\/(6x)]=1 所以,lim x→0 [sin6x+xf(x)]\/x^3 =lim x→0 [6x+xf(x)]\/x^3 =lim x→0 [6+f(x)]\/x^2 =0

x趋于0,lim x-o ( sin6x+xf(x))\/x3=0 ,lim x-o (6+f(x))\/x2=?
实际上,所要求的极限就是原极限的变形!原式=lim(x→0)[sin6x+xf(x)]\/x³=lim(x→0)[x(sin6x)\/x+f(x)]\/x³=lim(x→0)[x(6sin6x)\/6x+f(x)]\/x³=lim(x→0)[6+f(x)]\/x²=0 导数第二步就是所要求的。即 lim(x→0)[6+f(x)]\/...

已知,lim x→0 [sin6x+xf(x)]\/x^3=0 求:lim x→0 [6+f(x)]\/x^2=...
lim(x-->0) [sin(6x) + xf(x)]\/x³ = 0,要弄做不定式,分子和分母都要趋向0 sin(6x) + xf(x) = 0 xf(x) = - sin(6x)f(x) = - (sin6x)\/x lim(x-->0) [6 + f(x)]\/x²= lim(x-->0) [6 - (sin6x)\/x]\/x²= lim(x-->0) [6x - ...

...x→0 [sin6x+xf(x)]\/x^3=0, 求 lim x→0 [6+f(x)]\/x^2?
lim x→0 [sinx-x]\/x^3,如果按照你的那种做法,显然结果是0。实际上答案是-1\/6.此处应用的是一个很重要的公式——泰勒公式(只展开有限项目,后边的高阶项可视为高阶无穷小)sinx=x-1\/6*x^3.回到你的这道题,lim [sin6x+xf(x)]\/x^3=0 也就是 lim[6x-1\/6*(6x)^3+xf(x)...

...x→0 [sin6x+xf(x)]\/x^3=0, 求 lim x→0 [6+f(x)]\/x^2?
简单计算一下即可,答案如图所示

相似回答