曲线积分和曲面积分时,不是能用曲线和曲面方程带入积分函数简化吗?

曲线积分和曲面积分时,不是能用曲线和曲面方程带入积分函数简化吗,如果这样的话,第二类封闭曲面积分比如对dxdy积分用曲面方程化成xy的函数对dydz化成yz的函数,同理dzdx化成zx的函数,这样一用高斯公式求偏导不都是0吗?格林公式有同样的疑惑,不知道关键错在哪了,希望大家帮助一下!对了,还有一个问题,关于斯托克斯公式,边界曲线所围的曲面不止一个啊,化成曲面积分时结果不影响吗

我来回答你,是将曲线或者曲面的边界代入被积函数,比如球面方程 x²+y²+z²=a²(注意:这是球面方程,而非实心球体的方程,除非是x²+y²+z²≦a²,才是球体方程) 是将a²代入被积式.。
举例 ,曲面积分 ∫∫(x²+y²+z²)dxdy =a²∫∫dxdy
再举一个曲面积分例子∫∫x²dydz + y²dzdx + z² dxdy (积分区域为球面 x²+y²+z²=a²外侧) 按照你说的意思就是∫∫x²dydz + y²dzdx + z² dxdy = (这一步的时候已经将曲面积分转化为了二重积分了,只是多了一个正负号和双值函数的区别)∫∫(a²-z²-y²)dydz +(a²-x²-z²)dzdx + (a²-x²-y²)dxdy 再用高斯公式,这样是错误的。
事实上,这一题目可以用先高斯公式∫∫x²dydz + y²dzdx + z² dxdy 分别对x²、y²、z²求导数,直接转化为三重积分,最后用三重积分的对称性结果为0 。 还可以对∫∫x²dydz + y²dzdx + z² dxdy 使用轮换对称性=3∫∫x²dydz (由被积式和积分曲面的特点考虑)=3×2∫∫(a²-x²-y²)(±)dydz =0(这里将z²=a²-x²-y²代入,意思就是对xy坐标面进行有向投影,分为上下两个半球,上半球取正号,下半球去负号,所以结果为0)。懂了吧 ?
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-11-14
曲线积分(曲面积分)可以用曲线(曲面)函数化简被积函数。用格林公式或高斯公式时,第一步要严格应用公式,当然要先求导。一般能应用到格林公式或高斯公式的场合,都要自己创造公式条件,添加辅助线(面)使区域闭合,在整个区域应用公式后,还要减去辅助线(面)上的单独的曲线积分(曲面积分),这时才用到化简被积函数。
第2个回答  2012-10-19
如果在第二个例子中加上(被积函数)除以x²+y²+z²,此时可以直接用a²代替,岂不是说明有矛盾了,还是说不能用a²直接代入,求高手解答
第3个回答  2011-11-06
看不懂你的问题。

曲线积分和曲面积分时,不是能用曲线和曲面方程带入积分函数简化吗?
我来回答你,是将曲线或者曲面的边界代入被积函数,比如球面方程 x²+y²+z²=a²(注意:这是球面方程,而非实心球体的方程,除非是x²+y²+z²≦a²,才是球体方程) 是将a²代入被积式.。举例 ,曲面积分 ∫∫(x²+y²+z...

第二类曲线,曲面积分的路径方程,可以代入被积函数吧?
曲线积分其实都可以,但第二类曲线面积分是有向曲线和曲面,要视不同情况代入。所以一般不建议直接代入,要代入也要分清情况,相反,第一类曲线、曲面积分都可以直接代入,原因很简单,他没有方向

高等数学 第二类曲面积分 公式代入
曲线积分,曲面积分时,曲线与曲面的方程可以代入被积函数中,因为积分是在曲线或曲面上进行的。对于重积分来说,积分是在整个区域上积分的,所以仅仅把曲面的方程代入被积函数是不行的,区域内部呢?

曲线积分,曲面积分,二重积分,三重积分哪些不可以将积分区间的表达式代 ...
二重积分,三重积分不可以将积分区间的表达式代入被积函数,因为计算方式不适合区间。计算方法 直角坐标系法 适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法 1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。①区域条件:对积分区域Ω无限制;...

...在曲线积分和在曲面积分中为什么积分区域可以带入被积函数化简而在...
前两者积分区域都是对特定曲线或曲面积分,积分区域是等式,顾可直接在被积函数中替换掉相等的部分,即可带入积分区域,而后两者积分区域是不等式,往往是在给定区域内的一个范围内进行积分,是不等式,例如,三重积分:积分区域是半径1的球体,被积函数是x^2+y^2+z^2,若被积函数直接带入x^2+y^...

曲线积分和曲面积分与定积分和重积分的关系
曲线积分分为空间曲线积分和平面曲线积分,它的积分是沿曲线进行的,因为计算时可以将积分曲线的表达式代入被积式。平面曲线积分用格林公式沟通了与二重积分的联系,而二重积分却是在整个积分面进行的,不能将积分表达式代入被积式。曲面积分用斯托克斯公式沟通了与三重积分的联系,前者是在曲面上进行的积分...

数学分析讲义——曲线积分和曲面积分及它们之间的关系
例1:[公式]方向为逆时针方向,求[公式] 解: 技巧:曲线、曲面积分可以把曲线、曲面带到被积函数中化简,但是重积分不可以) [公式] [公式],根据格林公式,原式[公式][公式][公式] 注意:本题不能直接使用格林公式,因为不满足P,Q在区域内连续,即可导且一阶偏导连续。例2:[公式],求[公式...

曲面积分和曲线积分为什么可以直接代入表达式?
曲线\/曲面积分时,方程都是在边界的,不包括里面空间的部分 所以当被积函数在曲线方程上时,可以直接代入 重积分时,方程都是整个空间,包括边界和内部空间的部分 所以不可以直接代入 看方程就可以区别了:曲线\/曲面方程:x² + y² + z² = a²,留意这里只有等号 重积分时...

曲线积分和曲面积分
第一类曲线积分和第二类曲线积分的关系:可以用余弦进行代换,余弦值指的是线段的切向量,这个书本里面的,我就不写了 第一类曲面积分:对面积的曲面积分,求解时要通过给定的曲面方程形式,转化成x与y的形式,这个公式书里面也有的,就是求偏导吧?然后表示成平方和根式的形式 第二类曲面积分:对坐标...

回首掏之——曲线积分和曲面积分
曲线积分与曲面积分详解曲线积分是积分的一种特殊形式,它涉及积分函数沿着非区间路径——积分路径进行计算。这个路径可以是任意形状的曲线,无论是标量函数还是向量函数。对于标量场,例如[公式],沿着路径[公式]进行积分,得到的表达式是[公式],其中[公式]代表参数方程,[formula]和[formula]是路径的端点...

相似回答