用等价无穷小性质,求lim1-cosmx/x^2

lim1-cosmx/x^2(X->0)
limsin2x*(e^x-1)/tanx^2(x->0)

(1)由等价无穷小的性质可以知道,
当x->0的时候,1-cosx等价于0.5x^2,
所以1-cosmx等价于0.5(mx)^2,
故lim(x->0)1-cosmx/x^2=lim(x->0) 0.5(mx)^2 / x^2 = 0.5m^2

(2)同样,当x->0的时候,
sin2x等价于2x
e^x-1等价于x
而tanx^2等价于x^2
所以lim(x->0) sin2x*(e^x-1)/tanx^2
=lim(x->0) 2x*x / x^2
=lim(x->0) 2x^2 / x^2 =2
温馨提示:内容为网友见解,仅供参考
无其他回答

用等价无穷小性质,求lim1-cosmx\/x^2
(1)由等价无穷小的性质可以知道,当x->0的时候,1-cosx等价于0.5x^2,所以1-cosmx等价于0.5(mx)^2,故lim(x->0)1-cosmx\/x^2=lim(x->0) 0.5(mx)^2 \/ x^2 = 0.5m^2 (2)同样,当x->0的时候,sin2x等价于2x e^x-1等价于x 而tanx^2等价于x^2 所以lim(x->0) sin...

用等价无穷小性质求(1-cosmx)\/x^2的极限
(1-cosx)等价于x^2\/2 (1-cosmx)等价于(mx)^2\/2 lim(1-cosmx)\/x^2 =lim[(mx)^2\/2]\/x^2 =m^2\/2

求极限lim【1-cosmx)\/x^2】,x趋向0
用半角公式 1-cosx=2sin^2(x\/2)所以 (1-cosmx)\/x^2 =2sin^2(mx\/2)\/x^2 然后用等价无穷小 sinx~x, x->0 =2(mx\/2)^2\/x^2 =m^2\/2 极限为m^2\/2

求极限lim【1-cosmx)\/x^2】,x趋向0
用半角公式 1-cosx=2sin^2(x\/2)所以 (1-cosmx)\/x^2 =2sin^2(mx\/2)\/x^2 然后用等价无穷小 sinx~x,x->0 =2(mx\/2)^2\/x^2 =m^2\/2 极限为m^2\/2

x趋近于0时,求(1-cosmx)\/x²的极限 用等价无穷小代换计算
1-cossinx与(1\/2)sin²x等价.sinx与x等价 lim(1-cossinx)\/x²=lim (1\/2)sin²x\/x²=(1\/2)lim x²\/x²=1\/2

急!!求x 趋向于0时,极限lim【1-cosmx)\/x^2】 有没有不用等价无穷小的...
您好,

x趋近于0时,求(1-cosmx)\/x²的极限
1-cossinx与(1\/2)sin²x等价。sinx与x等价 lim(1-cossinx)\/x²=lim (1\/2)sin²x\/x²=(1\/2)lim x²\/x²=1\/2

当x趋向于0时,1-cosmx的等价无穷小
1-cosmx~1\/2·(mx)^2=m^2\/2·x^2

1-n次根号下cosmx的等价无穷小是多少?
cosmx = 1-(1\/2)(mx)^2 +o(x^2)[cosmx]^(1\/n)代入上面等价 =[1-(1\/2)(mx)^2 +o(x^2)]^(1\/n)=1 - [m^2\/(2n)]x^2 +o(x^2)1-[cosmx]^(1\/n)代入上面等价 =1 -[1 - [m^2\/(2n)]x^2 +o(x^2)]=[m^2\/(2n)]x^2 +o(x^2)所以 1-[cosmx]^(1...

lim x→0 ln(sin(mx))\/ln(sin(nx))=?
lim x→0 ln(sin(mx))\/ln(sin(nx))=lim x→0 ln(mx)\/ln(nx)(使用了等价无穷小:x→0 sin(mx)--mx,sin(nx)--nx)=lim x→0 [m\/(mx)]\/[n\/(nx)](罗必塔法则)=lim x→0 1 =1

相似回答
大家正在搜