已知隐函数XY=e(X+Y)次方,求dy

如题所述

解法一:∵xy=e^(x+y) ==>d(xy)=d(e^(x+y)) (两端取微分)
==>xdy+ydx=e^(x+y)(dx+dy)
==>xdy+ydx=e^(x+y)dx+e^(x+y)dy
==>xdy-e^(x+y)dy=e^(x+y)dx-ydx
==>(x-e^(x+y))dy=(e^(x+y)-y)dx
∴dy=[(e^(x+y)-y)/(x-e^(x+y))]dx;
解法二:∵xy=e^(x+y) ==>xy=e^x*e^y
==>ye^(-y)=e^x/x
==>d(ye^(-y))=d(e^x/x) (两端取微分)
==>(e^(-y)-ye^(-y))dy=((xe^x-e^x)/x²)dx
==>dy=[(xe^x-e^x)/(x²(e^(-y)-ye^(-y)))]dx
==>dy=[(xe^(x+y)-e^(x+y))/(x(x-xy))]dx (分子分母同乘e^y)
==>dy=[(xe^(x+y)-xy)/(x(x-e^(x+y)))]dx (∵e^(x+y)=xy)
==>dy=[x(e^(x+y)-y)/(x(x-e^(x+y)))]dx
∴dy=[e^(x+y)-y)/(x-e^(x+y))]dx。
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-11-05
一:∵xy=e^(x+y) ==>d(xy)=d(e^(x+y)) (两端取微分)
==>xdy+ydx=e^(x+y)(dx+dy)
==>xdy+ydx=e^(x+y)dx+e^(x+y)dy
==>xdy-e^(x+y)dy=e^(x+y)dx-ydx
==>(x-e^(x+y))dy=(e^(x+y)-y)dx
∴dy=[(e^(x+y)-y)/(x-e^(x+y))]dx;本回答被提问者采纳
第2个回答  2011-11-03
函数XY=e^(X+Y)
对x求导
y+xy'=e^(X+Y)(1+y‘)
y+xy'=e^(X+Y)+y‘e^(X+Y)
xy'-y‘e^(X+Y)=e^(X+Y)-y
y'【x--e^(X+Y)】=e^(X+Y)1-y
y' =【e^(X+Y)-y】/【x--e^(X+Y)】
所以 dy={【e^(X+Y)-y】/【x--e^(X+Y)】}dx
希望对你有所帮助,祝你学习进步!
第3个回答  2011-11-03
原式变为:ln(xy)=ln(e的x+y次方)
lnx+lny=x+y
两边对x求导得:1/x+dy/ydx=1+dy/dx
解得:dy/dx=y(x-1)/x(1-y)
第4个回答  2011-11-03

见图,将dx移过去即可

已知隐函数XY=e(X+Y)次方,求dy
解法一:∵xy=e^(x+y) ==>d(xy)=d(e^(x+y)) (两端取微分)==>xdy+ydx=e^(x+y)(dx+dy)==>xdy+ydx=e^(x+y)dx+e^(x+y)dy ==>xdy-e^(x+y)dy=e^(x+y)dx-ydx ==>(x-e^(x+y))dy=(e^(x+y)-y)dx ∴dy=[(e^(x+y)-y)\/(x-e^(x+y))]dx;解法二...

怎么求微分方程的通解?
步骤:xy=e^(x+y),微分得ydx+xdy=e^(x+y)*(dx+dy),整理得[y-e^(x+y)]dx=[e^(x+y)-x]dy,所以dy\/dx=[y-e^(x+y)]\/[e^(x+y)-x]。已知隐函数XY=e(X+Y)次方,求dy。x y = e^(x+y)。求导:y + x * y' = e^(x+y) * (1 + y')。即: y + x * ...

已知隐函数XY=e(X+Y)次方,求y'和dy,在线等,急!!!
x y = e^(x+y) => y dx + x dy = e^(x+y) (dx+dy) 即 y dx + x dy = (x y) (dx+dy)=> dy = [(y - xy) \/ (xy-x)] dx y ' = (y - xy) \/ (xy-x)

已知隐函数XY=e(X+Y)次方,求y'和dy,
y+xy'=(1+y')e^(x+y)则y'=(y-e^(x+y))\/(e^(x+y)-x),dy=(y-e^(x+y)\/(e^(x+y)-x)dx

求由方程xy=e的(x+y)次方所确定的隐函数y=y(x)的导数dy\/dx
xy=e^(x+y)(y+xy')=e^(x+y)*(x+y)'y+xy'=e^(x+y)(1+y')y+xy'=e^(x+y)+e^(x+y)(1+y')所以:dy\/dx=y'=[e^(x+y)-y]\/[x-e^(x+y)].

求这个隐函数的微分 xy=e的(x+y)次 的微分dy
xy=e^(x+y)两边对x求导得:y+xy'=e^(x+y)(1+y')解得:y'=(e^(x+y)-y)\/(x-e^(x+y))=(xy-y)\/(x-xy)dy=[(xy-y)\/(x-xy)]dx

xy=e^(x+y)求dy\/dx 谢谢 我是不明白为什么方法不一样 答案不一样呢_百...
xy=e^(x+y)求dy\/dx 这是隐函数求导问题:正统方法是用:隐函数存在定理来做;另一方法是等式两边对x求导,再解出y'来:方法1:f(x,y)=xy-e^(x+y)=0 dy\/dx=-f'x\/f'y f'x=y-e^(x+y) f'y=x-e^(x+y)dy\/dx=-[y-e^(x+y)]\/[x-e^(x+y)]方法2:y+xy'=(1+y'...

求隐函数xy等于e的x+y次方的微分dy
Y+xY'=e^(X+Y)*(1+Y')Y'(x-e^(X+Y))=e^(X+Y)-Y dy=[e^(X+Y)-Y]\/[(x-e^(X+Y))]*dx

由方程xy=e^(x+y)所确定的隐函数的导数dy\/dx=?
解:两边对x求导得:y+xy' = e^(x+y)(1+y')=xy(1+y')即: dy\/dx=y' =(y-xy)\/(xy-x)

xy=e^x+y 确定隐函数y的导数dy\/dx?
xy = e^x +y xy' + y = e^x + y'y'(1-x) = y -e^x y' = (y-e^x)\/(1-x),1,∵xy=e^(x+y)∴d(xy)=d[e^(x+y)]∴y+xdy\/dx=d(x+y)e^(x+y)=(1+dy\/dx)e^(x+y)∴(x-e(x+y))dy\/dx=e^(x+y)-y ∴dy\/dx=[e^(x+y)-y] \/ [x-e(x+y)]...

相似回答