定义:离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。
应用:逻辑与证明,算法,计算方法与分类原理,循环关系,图论,树,网络模型,布尔代数与组合电路,自动化、语法与语言,计算几何。离散数学课程所涉及的概念、方法和理论,大量地应用在 “ 数字电路 ” 、 “ 编译原理 ” 、 “ 数据结构 ” 、 “ 操作系统 ” 、 “ 数据库系统 ” 、 “ 算法的分析与设计 ” 、 “ 软件工程 ” 、 “ 人工智能 ” 、 “ 多媒体技术 ” 、 “ 计算机网络 ” 等专业课程以及 “ 信息管理 ” 、 “ 信号处理 ” 、 “ 模式识别 ” 、 “ 数据加密 ” 等
参考资料:http://202.199.64.12/depart/jiaowu/jp/sc/lssx/lssx.htm