定积分的几何意义是什么

如题所述

定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。

定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距  是相等的。但是必须指出,即使  不相等,积分值仍然相同。

我们假设这些“矩形面积和”  ,那么当n→+∞时,  的最大值趋于0,所以所有的  趋于0,所以S仍然趋于积分值。

利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。

一般定理:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

参考资料:百度百科——定积分

温馨提示:内容为网友见解,仅供参考
第1个回答  2016-01-20

  定积分的几何意义就是求函数f(X)在区间[a,b]中图线下包围的面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。

  具体如下图所示:

  

  


  

第2个回答  2016-01-19
如果对一个函数f(x)在a~b的范围内进行定积分
则其几何意义是该函数曲线与x=a,x=b,y=0这三条直线所夹的区域的面积,其中在x轴上方的部分的面积为正值,反之,面积为负值本回答被提问者采纳
第3个回答  2016-01-19
几何意义不太好说,其实说几何,就是图形,二维或者三围,就是求面积,或者体积本回答被网友采纳
第4个回答  2016-01-19
与坐标轴围成的面积

定积分的几何意义是什么 定积分的几何意义是怎样
1、定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。2、定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。3、这里应注意定积分与不定积分之间的关系:若定积分存在,则...

定积分的几何意义是什么
定积分在几何上,具有明确的实际意义。它主要表示曲线与坐标轴所夹的面积,也可以表示某些立体图形的体积。具体来说:1. 表示曲线与坐标轴之间的面积 当函数y=f在区间[a,b]上连续时,我们可以通过定积分来求解该函数图像与x轴所夹的平面面积。这个面积可以通过直线x=a,x=b,y轴以及函数图像f所围...

定积分的几何意义
定积分的几何意义是被积函数与坐标轴围成的面积。一、定积分的运用 在几何方面,定积分可以用来计算平面图形的面积、旋转体的体积、曲线的弧长以及旋转体的侧面积等。在物理方面,定积分可以用于解决与时间、长度、质量、面积等有关的物理问题,例如计算变速直线运动的位移、变力沿直线所作的功、液体对旋...

定积分的几何意义是什么?
定积分的几何意义是曲边梯形的有向面积,物理意义是变速直线运动的路程或变力所做的功。二重积分的几何意义是曲顶柱体的有向体积,物理意义是加在平面面积上压力(压强可变)。积分的线性性质:性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差)性质2(积分满足数乘)被积函数的...

定积分的几何意义是什么
其几何意义是前后界线、曲线和X轴所包围的面积

定积分的几何意义是什么
定积分的几何意义在于它代表被积函数与坐标轴围成的面积。具体地,x轴之上部分的面积被看作正值,x轴之下部分的面积则被看作负值。以余弦函数cosx在区间[0,2π]为例,其正负面积相抵,最终代数和为0。这揭示了定积分与几何图形之间的紧密联系。定积分作为积分的一种形式,指的是函数f(x)在区间[a,...

积分的几何意义是什么?
是的。定积分的几何意义是:1,当f(x)为正时,此函数在某一区间的定积分表示x轴上方函数所围成的面积。2,当f(x)为在某一给定区间为负时,定积分表示函数在x轴下方所围面积的相反数,即负数。3,当f(x)在某一区间有正有负时,定积分表示函数在x轴上方围成的面积减去x轴下方围成的面积的值...

定积分几何意义
定积分的几何意义是被积函数与坐标轴围成的面积。定积分属于积分的一种,它反映了函数f(x)在区间(a,b)内积分和的极限。其几何意义在于求解由y=0、x=a、x=b以及y=f(x)所围成的图形的面积,该图形被称为曲边梯形,而在某些特定情况下,它可能退化为曲边三角形。除了几何意义外,定积分...

定积分的几何意义?
定积分的几何意义:1、纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a区间终点的垂直线x=b,所围成的面积。2、也可以广义而言,定积分的几何意义就是“抽象的面积”。但是在具体应用题中,要看具体物理过程而定,例如:(1)如果横轴是体积,纵轴是压强,“抽象面积”的意义是...

定积分的值与哪些因素有关 定积分的几何意义是什么?
与被积表达式有关,另外与积分的上下限有关.定积分的几何意义就是不断变化的量在积分区间内累积所实现的效果.例如:在一定的时间范围内,对不断变化的功率定积分的结果就是,该段时间内所消耗的电量.另例:在一定的长度范围内,对不断变化的力定积分的值就是该力所做的功.在图形上来说,几何意义就是...

相似回答