设数列an的前n项和为sn,且sn=2an-2^n(n为正整数) 1.求证数列(an+1-2...
解:1、sn=2an-2^n 令n=1,得s1=a1=2a1-2则a1=2 得s(n+1)=2a(n+1)-2^(n+1)两式相减得a(n+1)=2an+2^n 变形得a(n+1)\/2^n=an\/2^(n-1)+1 故{an\/2^(n-1)}是首项为a1\/1=2公差为1的等差数列 则an\/2^(n-1)=n+1 则an=(n+1)*2^(n-1)2、an\/(n+1...
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*)1.求证数列{an+1}是等比...
a<n+1>+1=2an+2 (an+1)\/(a<n+1>+1)=(2a<n-1>+2)\/(2an+2)=(a<n-1>+1)\/(an+1)所以数列{an+1}是等比数列 设Bn=b1+b2+b3+...+bn=log2(a1+1)+log2(a2+1)+log2(a3+1)+...+log2(an+1)=log2[(a1+1)(a2+1)(a3+1)...(an+1)]这里不知道数列的公比,...
设数列{an}的前n项和为Sn,且Sn=2an-1(n∈N+).(Ⅰ)求证数列{an}是等 ...
(Ⅰ)由Sn=2an-1得Sn+1=2an+1-1,二式相减得:an+1=2an+1-2an,∴an+1an=2,∴数列{an}是公比为2的等比数列,(3分)又∵S1=2a1-1,∴a1=1,∴an=2n-1.(5分)(Ⅱ)∵nan=n2n-1,∴Tn=1?20+2?21+3?22+…+(n-1)?2n-2+n?2n-1①2Tn=1?2+2?22+…+(...
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).(1)求数列{an}的通项公...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…...
设数列an的前n项和Sn.且Sn=2an-2,n属于正整数, (1)求数列an的通项公式...
(2)-(1):a(n+1)=2a(n+1)-an a(n+1)=2an 所以,{an}是首项为2、公比为2的等比数列。an=2^n(n=1,2,3,……)2,cn=n\/2^n Tn=1\/2+2\/2^2+3\/2^3+…+n\/2^n (3)(3)\/2:Tn\/2=1\/2^2+2\/2^3+3\/2^4+…+n\/2^(n+1) (4)(3)-(4):Tn\/2=1\/...
已知数列an的前n项和是Sn,且sn=2an-n(n属于正整数)数列an+1是等比数 ...
2a(n+1) - 2a(n) - 1;得 a(n+1) = 2a(n) + 1 得a(n+1) + 1 = 2[ a(n) + 1 ]故a(n) + 1 为等比数列 公比为 2;得a(n) + 1 = 2^(n-1)* (a1+1)而 S1 = 2a1 - 1 = a1 得到 a1 = 1;所以有a(n)通项公式为:a(n) = 2^n - 1 解毕 ...
设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1...
那么也是等比数列,公比是1 因为a(n+1)-2an=2 a(n+1)=2an+2 所以a(n+1)+2=2(an+2)故数列{an+2}是等比数列,公比是q=2 因为a1=S1=2a1-2 所以a1=2 故an+2=(a1+2)*2^(n-1)=(2+2)*2^(n-1)=2^(n+1)所以an=2^(n+1)-2 如果不懂,请Hi我,祝学习愉快!
数列 请学长解答 已知数列an的前n项和为Sn,满足Sn=2an-2n(n属于自然...
即 (an+2)\/[a(n-1)+2] =2 由等比数列的定义知 an+2是以2为首项,2为公比的等比数列 2:由1得等比数列的通项公式为:an+2=2*n 所以bn=log(2)(an+2)=log(2)(2*n)=n bn\/(an+2)=n\/2*n Tn=1\/2+2\/4+3\/8+...+n\/2*n (1式)1\/2Tn=1\/4+2\/8+3\/16+......
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+...
解答:(1)证明:当n=1时,2a1=a1+1,∴a1=1.∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,两式相减得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,∴数列{an+1}为以2为首项,2为公比的等比数列,∴an+1=2n,∴an=2n-1,n∈N*;(2)解:bn=(2n+1)...
数列an的前n项和sn,满足sn=2an-2n,(1)证明an+2是等比数列,并求出{an}...
an+2为等比数列Sn-1=2an-1-2(n-1)Sn-Sn-1=an=2an-2n-2an-1+2(n-1)导出an=2an-1+2 an+2=2(an-1+2)所以 an+2成等比数列