数学解方程中, 十字交叉法怎么做?

如题所述

十字相乘法概念:
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果: ,在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。(平方“2” 格式弄不好,下面的例子分析着看,你一定会看明白的)

例题

例1 把2x2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1

a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.

例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).

例3 把5x2+6xy-8y2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2

5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.

例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例3:x2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m
温馨提示:内容为网友见解,仅供参考
第1个回答  2021-03-22

十字交叉法,理解透了,其实并不难

第2个回答  2012-08-05
把二次项系数拆开
常数项拆开
交差相乘
恰好得到一次项系数
则分解成功追问

嘿嘿,,请问您有图解吗?? 我脑子比较笨谢谢您啦。

第3个回答  2012-08-05
不知道你想问的是不是这个方程等号两边为分数时,左边分数的分母乘上右边分数的分子=右边分数的分母乘上左边分数的分子。 呵呵,加油! 到网上看吧
第4个回答  2012-08-05
交叉乘

如何用十字交叉法解方程?
十字交叉法因式分解口诀:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x_+(a+b)x+ab的逆运算来进行因式分解。对于像ax_+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2...

十字交叉法因式分解
十字交叉法的步骤如下:1. 将二次三项式写成 (px + q)(rx + s) 的形式,其中p、q、r、s是未知数。2. 找到p、q、r、s,使得(px + q)(rx + s)的展开式与原来的二次三项式完全一样。3. 将(px + q)(rx + s)进行展开,得到ax^2 + bx + c 的形式,并与原来的二次三项式进...

十字交叉法怎么解一元二次方程?
解一元二次方程十字交叉法的步骤:1、分解常数项。将一元二次方程中的常数项分解成两个数的积,这两个数可以是整数、分数或小数,但必须是同号的,即同为正数或同为负数。例如,对于方程x^2+5x+6=0,常数项6可以分解成2×3或(-2)×(-3)。2、交叉相乘。将分解后的两个因数分别写在方程...

十字交叉法的数学应用
(a-c):(c-b)=y:x 则任意知道x、y、a、b、c中的四个,可以求出未知量。不过,求c的话,直接计算更为简单。当知道x+y时,x或y任意知道一个也可采用此法;知道x:y也可以。相关的指标量可以是平均值、浓度等等。举例如下:1.求指标量a、b之一 例1.甲容器中有浓度为4%的盐水15...

数学解方程中, 十字交叉法怎么做?
解 6x2-7x-5=(2x+1)(3x-5).指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+...

解方程十字交叉法
十字交叉法是解一元一次方程的一种直观易懂的方法。它通过观察方程中的系数和常数项之间的关系,找到未知数的值。十字交叉法于二元组分混合体系的计算方法,常用于计算二元组分的比例关系,其原理如下:若 a、b(a > b)分别表示某二元组分中两种组分的量,c 表示 a、b 两组分的相对平均值,x、y...

数学解方程中,十字交叉法怎么做
分数十字交叉相乘 由外箱之积等于内项之积 3 2 3 \\ \/ 2 9 - × -- = --- \\ \/ --- = --- 2 3 2 \/ \\ 3 4

用十字交叉法怎么解方程
回答:解二元一次方程“十字交叉法” https:\/\/wenku.baidu.com\/view\/fa50f44bfe4733687e21aa56.html

用十字交叉法怎么解方程
十字交叉法,理解透了,其实并不难

因式分解十字交叉法的方法
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.如图所示:2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易...

相似回答