对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
对数函数相关性质:
如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
一、只要是对数函数,其定义域都是x>0。
1、f(x)=loga(1+4x)(1-x)的定义域就是求(1+4x)(1-x)>0的解集1653
定义域为-1/4<x<1
2、f(x)=lg(2x-3)(x+4) 的定义域就是求(2x-3)(x+4)>0的解集
定义域为x<-4或者x>3/2
二、对数函数的值域是函数y=f(x)中y的取值范围。例如:
求y=log2(4-x²)的值域。
对数是递增的,真数4-x²≦4,所以:y=log2(4-x²)≦log2(4)=2,即值域为(-∞,2]。求值域要先考虑真数的取值范围。
实数域实际应用
真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】
以上内容参考:百度百科-对数函数
本回答被网友采纳log函数定义域和值域定义域是什么?
只要是对数函数,其定义域都是x>0;值域为R 。对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1 和2x-1>0 ,得到x>1\/2且x≠1,即其定义域为...
log函数的定义域和值域是怎样的?
log函数是指数函数的反函数。它的性质如下:1. 定义域:log函数的定义域是正实数集合,即x > 0。2. 值域:log函数的值域是实数集合。3. 单调性:log函数是严格递增函数,即随着x的增大,log(x)也随之增大。4. 零点:log函数的零点是1,即log(1) = 0。5. 对数法则:a) 对数的乘法法则:log...
log的定义域与值域
log(a,x)定义域(0,+∞),值域R
什么是lg函数的定义域,lg函数的值域又是什么?
lg函数的定义域:(-∞,1)。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真...
对数函数的定义域,值域是怎么求的
对数函数的一般形式是y=loga x,定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1。如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1\/2且x≠1,即其定义域为 {...
log函数性质是什么?
1. 定义域和值域:- 定义域:log函数的定义域为正实数集合(x > 0)。- 值域:log函数的值域为实数集合。2. 基本性质:- log(1) = 0:log函数的底数为正实数时,log(1)等于0。- log(a, a) = 1:log函数的底数为正实数时,log函数的底数和真数相等时,结果为1。- 对数运算的反函数:...
log函数定义域和值域定义域是什么
定义域为-1\/4<x<1 2、f(x)=lg(2x-3)(x+4) 的定义域就是求(2x-3)(x+4)>0的解集 定义域为x<-4或者x>3\/2 二、对数函数的值域是函数y=f(x)中y的取值范围。例如:求y=log2(4-x²)的值域。对数是递增的,真数4-x²≦4,所以:y=log2(4-x²)≦log2(4...
对数函数的值域和定点是什么?
1、对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1\/2且x≠1,即其定义域为{x丨x>1\/2且x≠1}。2、值域:实数集R,显然...
什么是log函数
log函数是以某个正数(底数)为底的对数函数。以下是log函数的一些主要性质:1. 定义域:log函数的定义域为正实数集合,即 x > 0。2. 值域:log函数的值域为实数集合,即 (-∞, +∞)。3. 对数运算:log函数与指数函数是互逆的关系,即log_a(a^x) = x,其中a为正实数且不等于1,a为对数...
logx是什么函数的图像
1. 定义域和值域:logx在定义域上是正实数(x > 0),值域是实数。2. 对称轴:对数函数logx的图像是关于直线x = 1的对称的。3. 增长性:logx在定义域内是递增函数,意味着随着x的增加,logx的值也会增加。4. 渐近线:logx的图像有两条渐近线,即y轴(x = 0)和x轴(y = 0)。当x趋近...