1、(tan³t+1)/sec²t 分子
分母同乘以cos³t
=(sin³t+cos³t)/cost
=sin³t/cost+cos²t
=(1-cos²t)sint/cost+(1/2)(1+cos2t)
因此:∫ (tan³t+1)/sec²t dt=∫ (1-cos²t)sint/cost dt + (1/2)∫ (1+cos2t) dt
=-∫ (1-cos²t)/cost d(cost) + (1/2)∫ (1+cos2t) dt
2、最后结果:
(1/2)cos²t-lncost+t/2+(1/2)sintcost+C
其中:cos²t=1/(1+x²)
-lncost=-ln(1/√(1+x²))=ln(√(1+x²))=(1/2)ln(1+x²)
t/2=arctanx/2 (因为:tant=x)
(1/2)sintcost=(1/2)(x/√(1+x²))(1/√(1+x²))=(1/2)(x/(1+x²))
代入后即可得最后结果。