已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn

设Cn=T(2n+1)-Tn.求bn通项以及Cn增减性

解:a1=S1=2
当n≥2时,an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1
则b1=2/3
当n≥2时,bn=2/(an+1)=2/(2n-1+1)=1/n
Tn=2/3+1/2+1/3+……+1/n
Cn=T(2n+1)-Tn=1/(n+1)+1/(n+2)+……+1/(2n+1)
当n=k时,
Ck=1/(k+1)+1/(k+2)+……+1/(2k+1)
当n=k+1时,
C(k+1)=1/(k+2)+1/(k+3)+……+1/(2k+1)+1/(2k+2)+1/(2k+3)
C(k+1)-Ck=1/(k+2)+1/(k+3)+……+1/(2k+1)+1/(2k+2)+1/(2k+3)-[1/(k+1)+1/(k+2)+……+1/(2k+1)]
=1/(2k+2)+1/(2k+3)-1/(k+1)
=1/(2k+3)-1/(2k+2)<0
∴Cn严格单调递减
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-11-23
当n≥2且n∈N+时:an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1
当n=1时:a1=S1=1²+1=2不满足上式
2 ,n=1
∴an={2n-1,n≥2且n∈N+

∴ 2 /2+1=2/3 ,n=1
bn={2/(2n-1+1)=1/n ,n≥2且n∈N+

C(n+1)-C(n)=T(2n+3)-T(n+1)-T(2n+1)+Tn
=T(2n+3)-T(2n+1)-[T(n+1)-Tn]
=b(2n+3)+b(2n+2)-b(n+1)
=1/(2n+3)+1/(2n+2)-1/(n+1)
=(-1)/[2(2n+3)(n+1)]
∵n∈N+
∴C(n+1)-C(n)<0
∴C(n+1)<C(n)
∴{Cn}单调递减

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2\/(an+1),且前n...
解:a1=S1=2 当n≥2时,an=Sn-S(n-1)=n²+1-(n-1)²-1=2n-1 则b1=2\/3 当n≥2时,bn=2\/(an+1)=2\/(2n-1+1)=1\/n Tn=2\/3+1\/2+1\/3+……+1\/n Cn=T(2n+1)-Tn=1\/(n+1)+1\/(n+2)+……+1\/(2n+1)当n=k时,Ck=1\/(k+1)+1\/(k+2)+……+...

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2\/(an+1),且前n...
Sn=n^2+1 Sn-1=(n-1)^2+1 ∴an=2n-1 bn=2\/(2n-1+1)=1\/n Cn=bn+1+...+b2n+1=1\/(n+1)+1\/(n+2)..+1\/(2n+1)Cn+1=1\/(n+2)+...+1\/(2n+1)+1\/(2n+2)+1\/(2n+3)Cn-Cn+1=1\/(n+1)-1\/(2n+2)-1\/(2n+3)=1\/(2n+2)-1\/(2n+2)+1\/(2n+2)-1...

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足bn=2\/(an)+1,前n项和...
n>1时,an=Sn-S(n-1)=2n-1,bn=1\/n 第二题 Cn=1\/(n+1)+1\/(n+2)+...+1\/(2n+1)C(n+1)=1\/(n+2)+1\/(n+3)+...+1\/(2n+3)Cn-C(n+1)=1\/(n+1)-1\/(2n+2)-1\/(2n+3)>1\/(n+1)-1\/(2n+2)-1\/(2n+2)=0 故Cn>C(n+1),即Cn为单调递减数列 第三题 ...

已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足bn=2\/(an)+1,前n项和...
An=Sn-S(n-1)=n^2+1-[(n-1)^2+1]=2n-1 A1=S1=2 Bn=2\/An +1=2\/(2n-1)+1=(2n+1)\/(2n-1)B1=2\/A1+1=2 Bn是一个首项为2,通项为(2n+1)\/(2n-1) 的数列 (2)Cn=T(2n+1)-Tn 要判断Cn的单调性只要判断Cn-C(n-1)是大于0还是小于0即可 Cn-C(n-1)=T(2n+1...

已知数列AN的前N项和为SN=N^2+1,数列BN满足BN=2\/(AN+1)前N项和为TN...
Sn=n^2+1 a1=2 n>=2时 an=2n-1 bn=2\/(an+1)=1\/n Cn那个请表达清楚些,是T(2n+1)还是T(2n)+1

已知数列AN的前N项和为SN=N^2+1,数列BN满足BN=2\/(AN+1)前N项和为TN...
∴bn= 1 n (n≥2) 2 3 (n=1) (2)∵=bn+1+bn+2+…+b2n+1 =1 n+1 +1 n+2 +…+1 2n+1 ,∴+1-=1 2n+2 +1 2n+3 -1 n+1 <0,,1,已知数列AN的前N项和为SN=N^2+1,数列BN满足BN=2\/(AN+1)前N项和为TN,设CN=T2N+1-TN.1 求BN的通项公式 2求证:数列...

已知数列{an}的前N项和sn=n^2+2n,设数列{bn}满足an=log2bn
s1=a1=1+2=3 当n>=2 an=Sn-S(n-1)=n^2+2n-(n-1)^2-2(n-1)=2n-1+2=2n+1 n=1代入an满足 所以an=2n+1 an=log2bn bn=2^(2n+1)=2*4^n bn是等比数列 Tn=2*4[1-4^(n+1)]\/(1-4)=8[4^(n+1)-1]\/3 Gn=a1b1+a2b2+...anbn an是等差数列 bn是等比数列 ...

已知数列{an}的前n项和为sn,且sn=2n^2+n,n∈N*,数列{bn}满足an=4log2...
=2n^2-4n+2+n-1 =2n^2-3n+1 Sn-S(n-1)=an =2n^2+n-2n^2+3n-1 =4n-1 an=4log2 (bn)+3=4n-1 4log2(bn)=4n-4 log2(bn)=n-1 bn=2^(n-1)(2)an*bn=(4n-1)2^(n-1)=4n*2^(n-1)-2^(n-1)=n2^(n-1+2)-2^(n-1)=n2^(n+1)-2^(n-1)Tn=1*...

已知数列{an}的前n项和为Sn=n2+n求数列{an}的通项公式;若bn=(1\/2...
an=Sn-Sn-1=n^2+n-(n-1)^2-(n-1)=2n {an}通项公式为an=2n (2)bn=(1\/2)^an+n=(1\/2)^(2n)+n=(1\/4)^n+n Tn=b1+b2+...+bn =(1\/4)^1+(1\/4)^2+...+(1\/4)^n+(1+2+...+n)=(1\/4)[(1-(1\/4)^n]\/(1-1\/4)+n(n+1)\/2 =1\/3-(1\/3)(1\/4...

已知数列{an}的前n项和为sn,且sn=2n^2+n,n∈N*,数列{bn}满足an=4倍的...
an=4n-1 bn=2^(n-1)tn=an·bn=(4n-1)2^(n-1) 2tn=(4n-1)2^n t(n-1)=(4n-5)2^(n-2) 2 t(n-1)=(4n-5)2^(n-1)t(n-2)=(4n-9)2^(n-3) 2 t(n-2)=(4n-9)2^(n-2)... ...t2=7·2¹ ...

相似回答