求不定积分,分部积分法,大一

如题所述

而定积分是一个数,或在积分二元函数的下限,也可以成为一个二进制运算符,它可以被理解∫[A,B]的f(x)DX = A * B,其中*,对于积分操作(类似于简单的加减,但此时的法是不一样的定义,加减被映射到二维空间的点的一维空间中的某一点时,该定积分是相同的,但是这两个规则是不相同);
不定积分也可以被看作是一种操作,但最终的结果是不是数字,而是一类函数的集合
为积函数(原始函数初等。功能)有一个很奇妙的配方
∫[A,B] F(X)DX = F(B)-F(一)
其中F'(x)= F(X)或∫F(X)DX = F (X)+ C

最后,附上一个整体章难学本章中,我们首先必须差异化经营,使十分清楚,同时常用的公式都记住了一些定积分是不是牛顿 - 莱布尼兹公式,如∫[0,∞]的SiNx / XDX =π/ 2(具有许可计数),∫[0,∞] E ^(-x ^ 2)DX =√2/ 2(在术语双重积分极坐标代),这两个功能不使用原件及积分表示,因此,不能用牛顿的基本功能 - 莱布尼茨公式计算当你不知道什么时候他们可以花一年的努力却没有丝毫进展。我感到震惊的那年,我在高中暑假前自我演算,高中的时候就来到了一个定积分∫[0,π/ 2] DX /√(sinx的),开始怀疑这是否是一个先验的积分,如此高的空余时间我会计算定积分,大二直到伽玛功能完成后计算其价值(Γ(1/4))^ 2 /(2√(2π)),因此后获得不定积分∫dx/√(氮化硅)超出了点。有许多共同的超越整合,尤其是与根说,三角函数,其中大部分是超越,要注意自我。我希望你能有所帮助。
温馨提示:内容为网友见解,仅供参考
第1个回答  2014-12-15

追答

给个好评吧,亲!

本回答被提问者采纳
第2个回答  2014-12-15

求不定积分,分部积分法,大一
而定积分是一个数,或在积分二元函数的下限,也可以成为一个二进制运算符,它可以被理解∫[A,B]的f(x)DX = A * B,其中*,对于积分操作(类似于简单的加减,但此时的法是不一样的定义,加减被映射到二维空间的点的一维空间中的某一点时,该定积分是相同的,但是这两个规则是不相同);不...

大一高等数学里求不定积分,感觉没有什么思路!在遇到的各种问题时,可以...
3:分部积分法,∫ udv = uv - ∫ vdu,其中函数u比函数v更复杂,u比v更难进行积分 4:有理积分法,分为两种 第一:将一个大分式分裂为几个小分式,例如1\/(x² - 1) = 1\/[2(x - 1)] - 1\/[2(x + 1)]通常用待定系数法,即令1\/(x² - 1) = A\/(x - 1) + ...

大一数学微积分,求(arcsinx)^2的不定积分,分部积分法,要过程,谢谢
原式=(arcsinx)^2*x-∫xd[(arcsinx)^2]=(arcsinx)^2*x-∫2xarcsinx\/√(1-x^2)dx =(arcsinx)^2*x+2∫arcsinxd[√(1-x^2)]=(arcsinx)^2*x+2arcsinx*√(1-x^2)-2∫√(1-x^2)d(arcsinx)=(arcsinx)^2*x+2arcsinx*√(1-x^2)-2∫dx =(arcsinx)^2*x+2arcsinx...

大一数学微积分,求arctane^x\/e^x的不定积分,用分部积分法做,要过程
=-e^(-x)·(arctane^x)-1\/2·ln[e^(-2x)+1]+C 利用有些函数经一次或二次求微分后不变的性质,通过一次或二次分部积分后,只要它的系数不为1,就可以利用解方程的方法求出原积分。

求不定积分,一共三种方法
2、第一类换元积分法 原式=∫(x-1+1)\/√(x-1)dx =∫[√(x-1)+1\/√(x-1)]d(x-1)=(2\/3)*(x-1)^(3\/2)+2√(x-1)+C,其中C是任意常数 3、分部积分法 原式=∫2xd[√(x-1)]=2x√(x-1)-∫2√(x-1)dx =2x√(x-1)-(4\/3)*(x-1)^(3\/2)+C,其中C是你...

怎样求不定积分
1、直接利用积分公式求出不定积分。2、通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如 3、运用链式法则:4、运用分部积分法:∫udv=uv-∫vdu;将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。积分容易者选为v,求导简单者选为u。例子:∫Inx dx中应设U=Inx...

求分部积分法公式
如图:不定积分的公式 1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫ 1\/x dx = ln|x| + C 4、∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1 5、∫ e^x dx = e^x + C 6、...

大一高数不定积分,用分部积分法做
你的是对的,看图

分部积分法求不定积分
=e^xsinx-∫cosxd(e^x)=e^xsinx-e^xcosx+∫e^xd(cosx)=e^xsinx-e^xcosx-∫e^xsinxdx ∴2∫e^xsinxdx=e^xsinx-e^xcosx ∫e^xsinxdx=e^x(sinx-cosx)\/2 令t=-x ∫e^-xcosxdx =∫e^tcos(-t)d(-t)=-∫e^tcostdt =-∫costd(e^t)=-[e^tcost-∫e^td(cost)]=...

高数,不定积分,分部积分法
=∫xdf(x)=xf(x)-∫f(x)dx f(x)的原函数为sin2x 即:f(x)=(sin2x)', 则 f(x)=2cos2x 所以, 原式=2xcos2x-sin2x

相似回答
大家正在搜