问,如何证明1加1等于2呢!

别给我瞎扯淡

1加1等于2不需要证明。

证明“1加1等于2”的错误认识来源于我国数学家陈景润的一篇论文,其发表的论文题目为《表大偶数为一个素数及一个不超过二个素数的乘积之和》,并不是我们认为的“1加1等于2”。


扩展资料:

1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》。

论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。

参考资料来源:百度百科-陈景润

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-09-10
    当年歌德巴赫写信给欧拉,提出这么两条猜想: (1)任何大于2的偶数都能分成两个素数之和 (2)任何大于5的奇数都能分成三个素数之和
  很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 给你看一个假设: 用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44): 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(yεx.&.x\{y}ε0)} 2 := {x: y(yεx.&.x\{y}ε1)} 〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕 现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如: 0:= ∧, 1:= {∧} = {0} =0∪{0}, 2:= {∧,{∧}} = {0,1} = 1∪{1} [∧为空集] 一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。 在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。
  〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕 跟我们便可应用以下的定理来定义关于自然数的加法。 定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件: (1)对于|N中任意的元素x,我们有A(x,0) = x ; (2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。 映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下: (1) x+0 = x ;(2) x+y* = (x+y)*。 现在,我们可以证明"1+1 = 2" 如下: 1+1 = 1+0* (因为 1:= 0*) = (1+0)* (根据条件(2)) = 1* (根据条件(1)) = 2 (因为 2:= 1*) 〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。] 1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。
  我们可以这样证明"1+1 = 2": 首先,可以推知: αε1 (∑x)(α={x}) βε2 (∑x)(∑y)(β={x,y}.&.~(x=y)) ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y)) 所以对于任意的集合γ,我们有 γε1+1 (∑x)(∑y)(γ={x}∪{y}.&.~(x=y)) (∑x)(∑y)(γ={x,y}.&.~(x=y)) γε2 根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2
第2个回答  2015-04-19
当年歌德巴赫写信给欧拉,提出这么两条猜想: (1)任何大于2的偶数都能分成两个素数之和 (2)任何大于5的奇数都能分成三个素数之和 很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 给你看一个假设: 用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44): 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(yεx.&.x\{y}ε0)} 2 := {x: y(yεx.&.x\{y}ε1)} 〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕 现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如: 0:= ∧, 1:= {∧} = {0} =0∪{0}, 2:= {∧,{∧}} = {0,1} = 1∪{1} [∧为空集] 一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。 在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。 〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕 跟我们便可应用以下的定理来定义关于自然数的加法。 定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件: (1)对于|N中任意的元素x,我们有A(x,0) = x ; (2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。 映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下: (1) x+0 = x ;(2) x+y* = (x+y)*。 现在,我们可以证明"1+1 = 2" 如下: 1+1 = 1+0* (因为 1:= 0*) = (1+0)* (根据条件(2)) = 1* (根据条件(1)) = 2 (因为 2:= 1*) 〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。] 1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。 我们可以这样证明"1+1 = 2": 首先,可以推知: αε1 (∑x)(α={x}) βε2 (∑x)(∑y)(β={x,y}.&.~(x=y)) ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y)) 所以对于任意的集合γ,我们有 γε1+1 (∑x)(∑y)(γ={x}∪{y}.&.~(x=y)) (∑x)(∑y)(γ={x,y}.&.~(x=y)) γε2 根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2本回答被提问者采纳
第3个回答  2017-01-09
用皮亚诺公理推导1+1=2
皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。
皮亚诺的这五条公理用非形式化的方法叙述如下:
①0是自然数;
②每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
③如果b、c都是自然数a的后继数,那么b = c;
④0不是任何自然数的后继数;
⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。
(这条公理也叫归纳公理,保证了数学归纳法的正确性)
更正式的定义如下:  一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:
x不在f的值域内;
f为一个单射;
若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。
该结构所引出的关于自然数集合的基本假设:
1.N(自然数集)不是空集;
2.N到N内存在a→a'的一一映射;
3.后继元素映射的像的集合是N的真子集,事实上即N\{1}(或N\{0});
4.若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。
1+1的证明:
∵1+1的后继数是1的后继数的后继数,即3,
∴2的后继数是3。
根据皮亚诺公理③,可得:1+1=2。
第4个回答  2020-02-14

用3种方法证明1+1=2,你看看这三种方法对吗?很多人被搞糊涂了

问,如何证明1加1等于2呢!
1加1等于2不需要证明。证明“1加1等于2”的错误认识来源于我国数学家陈景润的一篇论文,其发表的论文题目为《表大偶数为一个素数及一个不超过二个素数的乘积之和》,并不是我们认为的“1加1等于2”。

1+1=2证明过程详解是什么?
1+1=2证明过程:因为1+1的后继数是1的后继数的后继数,即3。所以2的后继数是3。根据皮亚诺公理:如果b、c都是自然数a的后继数,那么b = c;,可得:1+1=2。一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以...

如何用1+1的结论证明1+1=2呢?
求证1+1=2的过程如下:因为1+1的后继数是1的后继数的后继数,即3。所以2的后继数是3。根据皮亚诺公理:如果b、c都是自然数a的后继数,那么b=c;可得:1+1=2。

证明为什么1加1等于2?
用反证法证明:假定1+1≠2根据自然数大小规定,后一个数是前面一个数+1,即2=1+1两者矛盾,所以1+1=2陈景润证明的叫歌德巴-赫猜想。并不是证明所谓的1+1为什么等于2。当年歌德巴-赫在给大数学家欧拉的一封信中说,他认为任何一个大于6的偶数都可以写成两个质数的和,但他既无法否定这个命题,...

证明1加1等于2
用反证法证明:假定1+1≠2 根据自然数大小规定,后一个数是前面一个数+1,即2=1+1 两者矛盾,所以1+1=2

1加1为什么等于2
4. 简单的验证:我们可以通过实际操作来验证这一点。比如,我们手头有一个苹果和一个苹果,把它们放在一起就有了两个苹果。这个过程简单直接地证明了1加1确实等于2。总的来说,从基础数学原理、符号表示到日常生活中的实际验证,都证明了一个事实:1加1确实等于2。这一数学规则在我们的日常生活和许多...

怎样证明1+1=2?
1、把表示减号“-”的那根火柴旋转适当角度,平移到数字“7”的上面。2、和后面的“0”构成汉字“加”。这样,题面就成了“1加1=2”,如果不要求严格的数学定义,这个由汉字、阿拉伯数字以及数学符号构成的等式就成立了。

1+1等于几?写出证明方法.
1 + 1 等于 2。这是数学中的基本事实,被称为加法的单位元素。证明方法可以使用逻辑和数学的基本原理。以下是一种简单的证明方法:证明:1.定义:假设我们有一个对象或者数量,用符号 "1" 来表示。当我们将这个数量与另一个 "1" 相加时,记为 1 + 1。2.同一性:根据数学公理中的等同律,两...

1+1为什么等于2
第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。数学上,还有另一个非常有名的“(1+1)”,它就是...

一加一等于几?
1.N(自然数集)不是空集;2.N到N内存在a→a'的一一映射;3.后继元素映射的像的集合是N的真子集,事实上即N\\{1}(或N\\{0});4.若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。1+1的证明:∵1+1的后继数是1的后继数的后继数,即3,∴2...

相似回答