lim(x→0) (1/sin^2 x-1/x^2 cos^2 x)=?
"limx趋向于0。(sin方x)分之一,减,(x方乘以cos方x)分之一"
请写明过程。
我只知道最后答案是 -2/3
...1\/sin^2 x-1\/x^2 cos^2 x)=? "limx趋向于0。(sin方x)分之一...
limx趋向于0。1\/(sin方x)-1\/(x方乘以cos方x)=lim [(sin方x)-(x方乘以cos方x)]\/[(sin方x)(x方乘以cos方x)]=lim [sin²x-x²(1-sin²x)]\/[sin²x*x²(1-sin²x)]=lim [sin²x-x²+x²sin²x)]\/[sin²...
lim(x趋近于0)((1\/sin^2 x)-(cos^2 x)\/x^2)=
lim(x→0)((1\/sin^2 x)-(cos^2 x)\/x^2)=lim(x→0) ((x^2-sin^2xcos^2x)\/x^2*sin^2x)=lim(x→0)((x^2-1\/4sin^2(2x))\/x^4) sinx与x等价无穷小量,再用罗必塔 =lim(x→0)(2x-1\/2sin4x)\/4x^3 =lim(x→0)(2-2cos4x)\/12x^2 =lim(x→0)(8sin4x\/24x)...
limx趋向于0(1\/sin^(2)x-1\/x^2) 洛必达法则
lim(x->0)(1\/(sinx)^2-1\/x^2)=lim(x->0)[x^2-(sinx)^2]\/x^4 =lim(x->0)(x+sinx)\/x*lim(x->0)(x-sinx)\/x^3 =2lim(x->0)(1-cosx)\/(3x^2)=2\/3*lim(x->0)1\/2x^2\/x^2 =1\/3
lim(x->0) (1\/sin^2x-cos^2x\/x^2)
简单计算一下即可,答案如图所示
...1)x趋近于0,lim[(1\/sin平方x)-1\/x平方] (2)x趋近于0+,(cos根号X...
1.lim(x->0) [(1\/sin^2 x)-1\/x^2] =lim(x->0) (x^2-sin^2 x)\/(x^2 *sin^2 x)一次罗比达=lim(x->0)(2x-sin2x)\/4x^3 再次罗比达=lim(x->0)(2-2cos2x)\/12x^2 最后一次罗比达=lim(x->0) 4sin2x\/24x= 1\/3 2.1^oo型,lim(x->0+) [cos根号x ]^(π\/x)...
lim(X→0)(1\/sin^2X-1\/X^2)
lim[x→0] (1\/sin²x - 1\/x²)=lim[x→0] (x²-sin²x)\/(x²sin²x)分母等价无穷小代换 =lim[x→0] (x²-sin²x)\/x⁴洛必达法则 =lim[x→0] (2x-2sinxcosx)\/(4x³)=lim[x→0] (2x-sin2x)\/(4x³)洛必达...
用洛必塔法则 求极限 lim(x趋于0) (1\/sinx^2)-(1\/x^2) 求解步骤
=lim(x→0) (x^2-sinx^2)\/(x^4) (0\/0,洛必达法则)=lim(x→0) (2x-2sinxcosx)\/(4x^3)=lim(x→0) (x-1\/2sin2x)\/(2x^3) (0\/0,洛必达法则)=lim(x→0) (1-cos2x)\/(6x^2) (等价无穷小代换)=lim(x→0) 1\/2(2x)^2\/(6x^2)=2\/6 =1\/3 ...
当x趋向于0时,求:(1\/sin^2x-1\/x^2)的极限?
通分,分母进行等价无穷小代换,注意分子不要进行代换。然后利用洛必达法则。分子要用无穷小代换的话,必须对正弦函数展开式展开到与分母同阶,舍弃更高阶的无穷小才可以,否则会发生错误。
1\/(sinx)^2-1\/x^2的x趋于0的极限是多少,怎么算呢
= lim(x→0){[(sinx)^2]-(x^2)}\/(x^4) (0\/0)= lim(x→0)(2sinxcosx-2x)\/(4x^3)= lim(x→0)(sin2x-2x)\/(4x^3) (0\/0)= lim(x→0)(2cos2x-2)\/(12x^2)= (2\/3)lim(x→0)(cos2x-1)\/[(2x)^2]= ……= -1\/3 ...
当x趋近于0时,求(1\/sin^2x)-1\/x^2的极限
所以得到x+sinx等价于2x,x^2*sin^2x等价于x^4 所以原极限=lim(x趋于0) 2x *(x -sinx) \/ x^4 =lim(x趋于0) 2(x -sinx) \/ x^3 所以洛必达法则求导 =lim(x趋于0) 2(1 -cosx) \/ 3x^2 而1-cosx等价于0.5x^2,代入得到原极限= 2* 0.5x^2 \/3x^2= 1\/3 ...