设f(x)=ax^2+bx+c(a,b,c为常数),已知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,求证:当-1≤x≤1时,|f(x)|≤5/4

谢谢!

-1<=f(-1)=a-b+c<=1
-1<=f(0)=c<=1
-1<=f(1)=a+b+c<=1
-1<=c<=1
0<=2b<=0,b=0
-1<=a+c<=1
f(x)=ax^2+c>=c<=1
-5/4<=f(x)<=5/4
温馨提示:内容为网友见解,仅供参考
无其他回答

设f(x)=ax^2+bx+c(a,b,c为常数),已知|f(-1)|≤1,|f(0)|≤1,|f(1)|...
0<=2b<=0,b=0 -1<=a+c<=1 f(x)=ax^2+c>=c<=1 -5\/4<=f(x)<=5\/4

已知函数f(x)=ax^2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1证明|b|...
参考方法:注意到F(0)=c,F(1)=a+b+c,F(-1)=a-b+c于是b=1\/2(F(1)-F(-1)而|f(1)|≤1,,|f(-1)|≤1, 则|b|=|1\/2(F(1)-F(-1)|≤1\/2(|f(1)|+|f(-1)|)≤1\/2(1+1)=1搞定!!!

设f(x)=ax^2+bx+c(a≠0)若|f(0)|≤ 1,|f(1)|≤ 1, |f(-1)|<=1.试证...
b=[f(1)-f(-1)]\/2 c=f(0)把它们代入到函数表达式里,再化简,得 |f(x)|=|[(x^2+x)f(1)]\/2+[(x^2-x)f(-1)]\/2+ (1-x^2)f(0)|≤|(x^2+x)\/2||f(1)|+ |(x^2-x)\/2||f(-1)|+|1-x^2||f(0)|≤ |(x^2+x)\/2|+|(x^2-x)\/2|+|1-x^2|= ...

已知二次函数f(x)=ax2+bx+c,a,b,c为实数,且当|x|≤1时,恒有|f(x)|...
f(1)=a+b+c,f(-1)=a-b+c,∴2a=f(1)+f(-1)-2f(0)又∵|x|≤1时,|f(x)|≤1,∴|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1,∴|2a|=|f(1)+f(-1)-2f(0)|≤|f(1)|+|f(-1)|+2|f(0)|≤4,...

设f(x)=ax^2+bx+c当|x|<=1,总有|f(x)|<=1求证|F(2)|<=8
f(x)=ax^2+bx+c当|x|<=1,总有|f(x)|<=1,所以|f(0)|=|c|≤1,|f(1)|=|a+b+c|≤1,|f(-1)|=|a-b+c|≤1,所以|f(2)|=|4a+2b+c| =|3(a+b+c)+(a-b+c)+(-3c)| ≤3|a+b+c|+|a-b+c|+|-3c| ≤3+1+3=7≤8.

已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足f(1)=1 f(-1)=0 且对任意...
f(1)=a+b+c=1 f(-1)=a-b+c=0 两式相减得b=1\/2,故有a+c=1\/2 f(x)=ax^2+(1\/2)x+(1\/2 -a)任意实数x都有f(x)≥x 即ax^2-(1\/2)x+(1\/2 -a)≥0恒成立 开口向上,与x轴最多一个交点 则有a>0 ,Δ=(1\/4)-4a(1\/2 -a)≤0 即a>0,(4a-1)^2≤0 所以...

f(x)=ax^2+bx+c,x∈[-1,1],|f(x)|≤1,求|a|+|b|+|c|的最大值
2|b|≤2 ==> |b|≤1 |f(1)|≤1 ==> |a+b+c|≤1 |f(-1)|≤1 ==> |a-b+c|≤1 b和-b中一定有和a+c同号的,则|a+c|+|b|≤1 |a|+|b|+|c| =|a+c-c|+|b|+|c| ≤|a+c|+|c|+|b|+|c| =|a+c|+|b|+2|c| ≤1+2 =3 而a=1 b=1 c=-1时...

已知f(x)=ax∧2+bx+c在[0,1]上满足|f(x)|≤1,求|a|+|b|+|c|的最大值
最大值17 f(x)=ax^2+bx+c,当0≤x≤1时,有|f(x)|≤1,∴|f(0)|=|c|

...f(x)=ax^2+bx+c,g(x)=ax+b,当-1<=x<=1时,|f(x)|<=1.⑴求证...
(1) f(x)=ax^2+bx+c 取x=0 f(x)=c -1<0<1 所以|f(0)|=|c|<=1 (2)f(1)=a+b+c 所以-1<=a+b+c<=1 所以-2<=a+b<=2 f(-1)=a-b+c 所以-2<=a-b<=2 因为g(x)为单调函数,两端在[-2,2]内,所以-2<=g(x)<=2 即|g(x)|<=2 (3)当a>0时 g(x...

设f(x)=ax2+bx+c(a≠0),对于任意-1≤x≤1,有f(x)|≤1;求证|f(2)|≤7
由已知条件知f(x)=ax2+bx+c(a≠0),且|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,定义域为[-1,1]∴|c|≤1,|a+b+c|≤1,|a-b+c|≤1;∵|f(2)|=|4a+2b+c|=|3(a+b+c)+(a-b+c)-3c|≤|=|3(a+b+c)|+|(a-b+c)|+|-3c|≤3+1+3=7∴|...

相似回答
大家正在搜