在三角形ABC中,若sin^2A=2sinBcosC,sin^2A=sin^2B+sin^2C 求答案...
sin^2A=sin^2B+sin^2C 相减得 sin^2B+sin^2C-2sinBcosC=0 (sinB-sinC)=0 sinB=sinC 所以 B=C,是等腰三角形,且B、C都是锐角
...若sinA=2sinBcosC,sin^2A=sin^2B+sin^2C,试判断ABC的形状
sin^2A=sin^2B+sin^2C,a^2 =b^2 +c^2,∠A=90度,此时sinA=2sinBcosC为1=2sin^2 B,B=45度。ABC为等腰直角三角形。【【不清楚,再问;满意, 请采纳!祝你好运开☆!!】】
在ΔABC中,若sin^2 A=sin^2 B+sin^2 C,且sinA=2sinBcosC,试判断ΔABC...
得sinBcosC+cosBsinC=2sinBcosC cosBsinC-sinBcosC=0 sin(C-B)=0 可知B=C 所以这个三角形的形状是等腰直角三角形
在△ABC中,求证:sin^2A+sin^2B-sin^2C=2sinAsinBcosC
证明左边=1\/2(1-cos2A)+1\/2(1-cos2B)-(1-cos²C)=cos²C-1\/2(cos2A+cos2B)=cos²C-cos(A+B)·cos(A-B)=cos²C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1\/2(C+A-B)cos1\/2(C-A+B)=2cosCcos1\/2(180°-2B)cos(1\/2)(180°-2A)=2...
在△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,则△ABC的形状是( )A...
因为sin2A=sin2B+sin2C,由正弦定理可知,a2=b2+c2,三角形是直角三角形.又sinA=2sinBcosC,所以a=2ba2+b2?c22ab,解得b=c,三角形是等腰三角形,所以三角形为等腰直角三角形.故选D.
在△ABC中,若sin^2A=sin^2B+sin^2C,且sinA=2sinB cosB,试判断△ABC...
改了 结果相同 由正弦定理a\/sinA=b\/sinB=c\/sinC (sinA)^2=(sinB)^2+(sinC)^2 等价于a^2=b^2+c^2 可知△ABC直角三角形 A=π\/2 sinA=2sinBcosC 1=2sinBcos(π\/2-B)1=2sinBsinB sinB=1\/√2 可知B=π\/4 △ABC等腰直角三角形 ...
求证sin^2A+2sinBsinCcosA=sin^2B+sin^2C
证明:∵A+B+C=180°,∴sinA=sin(B+C)=sinBcosC+cosBsinC,cosA=-cos(B+C)=-(cosBcosC-sinBsinC)sin²A+2sinBsinCcosA =(sinBcosC+cosBsinC)²-2sinBsinC(cosBcosC-sinBsinC)=sin²Bcos²C+cos²Bsin²C+2sinBsinCcosBcosC-2sinBsinCcosBcosC...
在△ABC中,求证:sin^2A+sin^2B-sin^2C=2sinAsinBcosC
证明左边=1\/2(1-cos2A)+1\/2(1-cos2B)-(1-cos²C)=cos²C-1\/2(cos2A+cos2B)=cos²C-cos(A+B)·cos(A-B)=cos²C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1\/2(C+A-B)cos1\/2(C-A+B)=2cosCcos1\/2(180°-2B)cos(1\/2)(180°-2A)=2...
在三角形ABC中,sin^2A=sin^2B+sin^2C,则△ABC的形状为?不用正弦定理...
在三角形中有sinA=sin(B+C),所以原式可变为:sin^2(B+C)=sin^2B+sin^2C 展开:sin^2Bcos^2C+2sinBcosCsinCcosB+cos^2Bsin^2C=sin^2B+sin^2C 将左边移到右边:sin^2B(1-cos^2C)+sin^2C(1-cos^2B)-2sinBcosCsinCcosB=0 sin^2Bsin^2C+sin^2Csin^2B-2sinBcosCsinCcosB...
在三角形ABC中,若sinA=2sinBcosC
所以:B=C 代入sinA=2sinBcosC=2sinBcosB=sin2B 所以:A=2B或者A+2B=180° 所以:三角形ABC是等腰三角形 2)sin²A=sin²B+sin²C 结合正弦定理有:a\/sinA=b\/sinB=c\/sinC=2R 则根据两式有:a²=b²+c²三角形ABC是以A为直角的直角三角形 所以:A=...