可导与连续性的关系

可导与连续性的关系第四题 最好有详解

连续和可导的关系,快来学习吧

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-07-30

关于函数的可导导数和连续的关系:

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

函数在某点可导的充要条件是左右导数相等且在该点连续。

显然,如果函数在区间内存在“折点”,(如f(x)=|x|的x=0点)则函数在该点不可导。

拓展资料:

因为函数在闭区间上连续要求左端点右连续、右端点左连续;而函数可导则要求函数在一点的左右导数均存在且相等,若为闭区间,则只能验证左端点是否有右导数,右端点是否有左导数,故函数在闭区间的端点处不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

如果函数y=f(x)在点x处可导,则函数y=f(x)在点X处连续,反之,函数y=f(x)在点x处连续,但函数y=f(x)处不一定可导。

参考资料:可导百度百科

第2个回答  推荐于2020-03-06
第一题你给分母乘以2变成2h就配成倒数定义了 那么需要在极限外面再乘以2 就变成了2倍的导数
第二题我重点说明一下 这个题能做的前提是x0可导 但是你不能用这个极限存在去判定导数就存在
给分母乘以个a 给分子加个f(x)-f(x) 配合成2段导数相加 分母乘以a需要在整体极限外面乘以a 然后2af'(x) 再次重复一下 如果该点可导你可以推出来这个极限 但是用这个极限不能推出来该点可导!本回答被网友采纳
第3个回答  2019-05-07

宋聪聪律师

擅长:婚姻家庭

张保刚律师

擅长:公司法务

刘勇律师

擅长:损害赔偿

王莉律师

擅长:劳动工伤

陈娜律师

擅长:税务合规

朱哲雨律师

擅长:合同纠纷

李昌锁律师

擅长:经济纠纷

李金杏律师

擅长:债权债务

    官方电话在线客服官方服务
      官方网站电话咨询

函数的可导性与连续性的关系
2、连续性与可导性关系:连续是可导的必要条件,即函数可导必然连续;不连续必然不可 导;连续不一定可导。典型例子:含尖点的连续函数。

连续与可导的关系
可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。关于函数的可导导数和连续的关系1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、...

可导与连续的关系?
连续与可导的关系是:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。函数可导的充要条件 函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)...

连续与可导的关系是什么?
连续与可导的关系:1、连续的函数不一定可导;2、可导的函数是连续的函数;3、越是高阶可导函数曲线越是光滑;4、存在处处连续但处处不可导的函数。可导:微积分是在17世纪末由英国物理学家、数学家牛顿和德国数学家莱布尼茨建立起来的。微积分是由微分学和积分学两部分组成,微分学是基础。微分学的基本...

函数可导与连续的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微=>可导=>连续=>可积

函数的连续与可导有什么联系和区别?
关于函数的可导导数和连续的关系:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏...

连续与可导的关系是什么?
一、连续与可导的关系:1. 连续的函数不一定可导;2. 可导的函数是连续的函数;3.越是高阶可导函数曲线越是光滑;4.存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,...

函数连续和可导的关系
函数连续和可导的关系是可导性一定意味着连续性。也就是说,如果一个函数在某点可导,那么它在该点也是连续的。可导性:函数f(x)在点x处可导,意味着它在该点的导数存在,即导数极限 f′(x)=lim(h→0)[f(x+h)−f(x)]\/h存在。连续性:函数f(x)在点x处连续,意味着在该点的函数...

可导和连续的关系
连续和可导的关系,快来学习吧

函数可导与连续性关系
大学微积分中有一个定理:函数可导必然连续,不连续必然不可导,连续不一定可导。微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和...

相似回答