已知数列{an}的前n项和为Sn=1/2n(n+1).
(1)求数列{an}的通项公式,
(2)若b1=1,2bn-b(n-1)=0,cn=anbn,数列{Cn}的前n项和为Tn,求证:Tn<4.
已知数列{an}的前n项和为Sn=1\/2n(n+1).(1)求数列{an}的通项公式,(2...
∵Sn=1\/2n(n+1)a1=S1=1 n≥2时,an=Sn-S(n-1)=1\/2n(n+1)-1\/2(n-1)n=n 当n=1时,上式也成立 ∴数列{an}的通项公式an=n (2)∵2bn-b(n-1)=0∴bn\/b(n-1)=1\/2 ∴{bn}为等比数列,公比为1\/2,又b1=1 ∴bn=1\/2^(n-1)cn=n\/2^(n-1)Tn=1+2\/2^1+3\/2...
已知数列{an}的前n项和为sn,且an=Sn-1+2(n≥2),a1=2.(1)求数列{an}的...
(1)由已知an=Sn-1+2,①an+1=Sn+2,②②-①,得an+1-an=Sn-Sn-1 (n≥2),∴an+1=2an (n≥2).又a1=2,∴a2=a1+2=4=2a1,∴an+1=2an (n=1,2,3,…)∴数列{an}是一个以2为首项,2为公比的等比数列,∴an=2?2n-1=2n.(2)bn=1log2an=1log22n=1...
已知数列{an}的前n项和为Sn,且Sn=n2+2n.(Ⅰ)求数列{an}的通项公式...
(Ⅰ)∵Sn=n2+2n,∴当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,当n=1时,a1=3,也符合上式,∴an=2n+1;(Ⅱ)由题意知bn=2bn-1+1,∴bn+1=2(bn-1+1)(n≥2),∴bn+1bn?1+1=2∵b1+1=2,∴{bn+1}是2为首项,2为公比的等比数列,∴bn...
...和Sn=n(n+1)\/2 (n∈N*) (1)求数列{an}的通项公式 (2)设数列{bn}满...
a(n) = S(n) - S(n-1)a(n) = n(n+1)\/2 - (n-1)n\/2 = n (2)(2an-1)(2^(bn)-1) = 1 (2n - 1)(2^(bn)-1) = 1 2^(bn)-1 = 1\/(2n - 1)2^(bn) = 2n\/(2n - 1)b(n) = log(2)[2n\/(2n - 1)]T(n) = b(1) + b(2) +...+ b(n)T...
已知数列an的前n项和为Sn,a1=2,nan+1=Sn+n(n+1),(1)求数列an的通项公 ...
(1)∵nan+1=Sn+n(n+1)∴(n-1)an=Sn-1+n(n-1)(n≥2)两式相减可得,nan+1-(n-1)an=Sn-Sn-1+2n即nan+1-(n-1)an=an+2n,(n≥2)整理可得,an+1=an+2(n≥2)(*)由a1=2,可得a2=S1+2=4,a2-a1=2适合(*)故数列{an}是以2为首项,以2为公差的等差...
...1(n∈N*),(1)求数列{an}的通项公式;(2)令bn=1anan+1,求数列bn的...
(1)∵Sn=n2+2n+1,∴当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,当n=1时,a1═S1=1+2+1=4,数列{an}的通项公式an=4,n=12n+1,n≥2;(2)令bn=1anan+1,则b1=1a1a2=14×5,当n≥2时,求bn=1anan+1=1(2n+1)(2n+3)=12(12n+1?12n...
已知数列{an}的前n项和为Sn,且a1=1\/2,a(n+1)=(n+1)an\/2n,(1)求{an}...
a1\/1=(1\/2)\/1=1\/2,数列{an\/n}是以1\/2为首项,1\/2为公比的等比数列 an\/n=(1\/2)(1\/2)^(n-1)=1\/2ⁿan=n\/2ⁿ数列{an}的通项公式为an=n\/2ⁿ(2)Sn=a1+a2+a3+...+an=1\/2+2\/2²+3\/2³+...+n\/2ⁿSn \/2=1\/2²+2\/2...
已知数列{an}的前n项和Sn=n2+n,数列{bn}有b1=1,bnbn+1=2n(Ⅰ)求{an}...
(1)当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,又n=1时也符合上式.∴an=2n.(2)∵bnbn+1=2n,∴当n≥2时,bn-1bn=2n-1.∴bnbn+1bn-1bn=bn+1bn-1=2n2n-1=2,又∵b1=1,b1b2=2,∴b2=2.∴数列{b2n} 是以2为首项...
已知数列{an}的前n项和为Sn,a1=1,且an+1+23Sn=1(n≥1)(1)求出数列{an...
3a2+2a1=3,解得 a2=13.∴数列{an}是首项为1,公比为q=13的等比数列.∴an=(13)n?1(n为正整数)(2)由bn-bn-1=2Sn-1(n≥2)叠加可得bn-b1=2(Sn-1+…+S1)由(Ⅰ)知Sn=32(1?13n),2(Sn?1+…+S1)=3(n?1)?32(1?13n?1)故bn=3n?72+12×3n?2n≥1 ...
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*),(Ⅰ)求数列...
(Ⅰ)∵Sn+1=2Sn+n+1(n∈N*)当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,两边加上1得出an+1+1=2(an+1),又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)所以数列{an+1}是公比为2的等比数列,首项a1+1=2,数列{an+1}的通项公式为an+1=2?2n-1=2n,∴an...