已知数列{an}的前n项和Sn=n(n+1)/2 (n∈N*) (1)求数列{an}的通项公式 (2)设数列{bn}满足(2an-1)(2^(bn)-1)=1,Tn为{bn}的前n项和,求证:
2Tn>log2(2an+1),n∈N*.
已知数列{an}的前n项和Sn=n(n+1)\/2 (n∈N*) (1)求数列{an}的通项公...
a(n) = S(n) - S(n-1)a(n) = n(n+1)\/2 - (n-1)n\/2 = n (2)(2an-1)(2^(bn)-1) = 1 (2n - 1)(2^(bn)-1) = 1 2^(bn)-1 = 1\/(2n - 1)2^(bn) = 2n\/(2n - 1)b(n) = log(2)[2n\/(2n - 1)]T(n) = b(1) + b(2) +...+ b(n)T...
已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),(1)求数列{an}的通项公式...
(1)∵Sn=n2+2n+1,∴当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,当n=1时,a1═S1=1+2+1=4,数列{an}的通项公式an=4,n=12n+1,n≥2;(2)令bn=1anan+1,则b1=1a1a2=14×5,当n≥2时,求bn=1anan+1=1(2n+1)(2n+3)=12(12n+1?1...
已知数列{an}的前n项和Sn=n2+n2,n∈N*.(1)求数列{an}的通项公式; (2...
(1)解:当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=n2+n2?(n?1)2+n?12=n,n=1时也适合.所以an=n(2)由(1)bn=2n+n(-1)n,数列{bn}的前2n项和T2n=21+22+…22n+[(-1+2)+(-3+4)+…+(-(2n-1)+2n]=1?22n1?2+n=4n+n-1 ...
...n项和为Sn,且Sn=n2+n(1)求数列{an}的通项公式;(2)令bn=an2n(n∈N...
(1)当n=1时,a1=S1=2…(2分)当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,n=1时,也适合上式.∴an=2n.…(6分)(2)由已知:bn=2n?2n=n?2n+1,∵Tn=1?22+2?23+3?24+…+n?2n+1,①∴2Tn=1?23+2?24+…+(n-1)?2n+1+n?2n+2,②...
...且sn=n(n+1)\/2 ①求数列{an}的通项公式 ②设bn=an\/2^n,数列{bn}...
解:n=1时,a1=S1=1×2\/2=1 n≥2时,S(n-1)=(n-1)n\/2 an=Sn-S(n-1)=n(n+1)\/2-(n-1)n\/2=n 当n=1时,a1=1,成立 ∴an=n (2)bn=n\/2^n Tn=1\/2^1+2\/2^2+3\/2^3+...+n\/2^n Tn\/2=1\/2^2+2\/2^3+3\/2^4+...+n\/2^(n+1)Tn\/2=Sn-Sn\/2=1\/2...
已知数列{an}的前n项和sn,且sn=(n*a(n+1))\/2,其中a1=1,求数列{an}的...
⑴设n≥2 an=sn-s(n-1)=[na(n+1)-(n-1)an]\/2 an+nan=na(n+1)a(n+1)=[(n+1)\/n]an 由累乘法得a(n+1)=(n+1)a1\/a1 ∴an=n a1=1也符合 ∴an=n n≥1 n∈N+ ⑵归纳法 略 best wish
...Sn=2n?1(n∈N*).(1)求数列{an}的通项公式;(2)设hn=Sn?an,且_百度...
(1)当n=1时,a1=S1=1,…(9分)当n>1时,an=Sn?Sn?1=(9n?1)?(9n?1?1)=9n?9n?1=9n?1,∵a1=1适合上式,∴{an}的通项公式是an=9n?1.…(6分)(9)bn=(9n?1)9n?1=99n?1?9n?1,…(地分)∴Tn=(91+9个+95+…+99n?1)?(90+91+99+…+9n?1)=9(...
已知数列an的前n项和为Sn,且Sn=n(n+1)(n属于N*)求数列an的通项公式...
(1)Sn=n(n+1)n=1 , a1=2 an = Sn-S(n-1)= 2n (2)an=b1\/(3+1)+b2\/(3^2+1)+...+bn\/(3^n+1) (1)a(n-1)=b1\/(3+1)+b2\/(3^2+1)+...+b(n-1)\/(3^(n-1)+1) (2)(1)-(2)an - a(n-1) = bn\/(3^n+1)2n-2(n-1)= bn\/(3^n+1)b...
...且满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在数列{an}...
(Ⅰ)n=1时,s1+1=2a1,∴a1=1,…(2分)n≥2时,又sn-1+1=2an-1,相减得an=2an-1,∵{an}是以1为首项,2为公比的等比数列,故an=2n?1…(6分)(Ⅱ)由(Ⅰ)得an+1=2n,∴2n=2n-1+(n+1)dn,∴dn=2n?1n+1,∴1dn=n+12n?1…(8分)∴Tn=220+321+…+...
...且Sn=an(an+1)2(n∈N*).(1)求数列{an}的通项公式;(2)
12+an-1,两式相减得:2an=2(Sn?Sn?1)=a2n?a2n?1+an?an?1,…(3分)∴(an+an-1)(an-an-1-1)=0,∵an+an-1>0,∴an-an-1=1,n≥2,…(5分)∴数列{an}是等差数列,∴an=n…(6分)(2)由(1)Sn=n(n+1)2,∴bn=?2Sn(n+1)?2n=?n2n,…(8分)...