欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr
,
物理学公式F=fe^ka等。
复变函数
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。[2]
欧拉公式
e^ix=cosx+isinx的证明:
因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……
cos
x=1-x^2/2!+x^4/4!-x^6/6!……
sin
x=x-x^3/3!+x^5/5!-x^7/7!……
在e^x的展开式中把x换成±ix.
(±i)^2=-1,
(±i)^3=∓i,
(±i)^4=1
……
e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……
=(1-x^2/2!+……)±i(x-x^3/3!……)
所以e^±ix=cosx±isinx
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:
恒等式
e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”
那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。
那么这里的π就是x,那么
e^iπ=cosπ+isinπ
=-1
那么e^iπ+1=0
这个公式实际上是前面公式的一个应用。
分式
分式里的欧拉公式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
三角公式
三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
拓扑学说
拓扑学里的欧拉公式:
拓扑学 V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。[3]
X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。
初等数论
初等数论里的欧拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
利用容斥原理可以证明它。
物理学
欧拉公式应用
众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。现将欧拉这个颇有价值的公式列在这里:
F=fe^ka
其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。
此外还有很多著名定理都以欧拉的名字命名。
温馨提示:内容为网友见解,仅供参考
欧拉定理的公式是什么?
欧拉公式:点数+面数-棱数=2 如:长方体:8点6面12条棱,8+6-12=2 n棱锥:点+面-棱=(n+1)+(n+1)-2n=2 n棱柱:点+面-棱=2n+(n+2)-3n=2
欧拉公式是什么?求解!快快快
欧拉公式有4条 (1)分式: a^r\/(a-b)(a-c)+b^r\/(b-c)(b-a)+c^r\/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复数 由e^iθ=cosθ+isinθ,得到: sinθ=(e^iθ-e^-iθ)\/2i cosθ=(e^iθ+e^-iθ)\/2 (3)三角...
欧拉公式是一种什么公式?
欧拉公式是一种描述复数指数运算的公式。欧拉公式是一种描述复数指数运算的公式,由瑞士数学家欧拉于18世纪发现。它表达式为e^(ix)=cos(x)+isin(x),其中e表示自然对数的底数,i表示虚数单位,x为实数。欧拉公式的意思是:当以e为底,以虚数i乘上一个实数x时,其结果可以表示为一个具有实部和...
欧拉公式是什么?
欧拉定理:e^(ix)=cosx+isinx。其中:e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。将公式里的x换成-x,得到:e^(-ix)=cosx-isinx,然后采用两式相加减的方法得到:sinx=[e^(ix)-e^(-ix)]\/(2i)...
欧拉公式是什么,有什么应用呢?
欧拉公式是一个在复数学说中的重要公式,它揭示了实数、虚数与复数的内在关系。欧拉公式的内容为:对于任何实数x,欧拉公式表示为e^ = cos + isin。其中,e是自然对数的底数,i是虚数单位,cos和sin分别表示余弦和正弦函数。欧拉公式的详细解释如下:一、欧拉公式的定义 欧拉公式是复数学说中的一个核心...
初一数学欧拉公式是什么?
初一数学欧拉公式是: R+ V- E= 2。在任何一个规则球面地图上,用 R记区域个 数,V记顶点个数,E记边界个数,则 R+ V- E= 2,这就是欧拉定理,它于 1640年由 Descartes首先给出证明,后来 Euler(欧拉 )于 1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称为 Descartes定理...
欧拉公式的展开式是什么?
欧拉公式展开式:e^ix=cos(x)+isin(x)。
什么是欧拉公式
欧拉公式是数学中的一个重要定理,它描述了复数、三角函数和几何之间的关系。具体公式为:e^ = cosθ + isinθ。其中,e是自然对数的底数,i是虚数单位,θ是实数。这个公式将复数表示为三角函数的指数形式,为复数和三角函数之间的转换提供了桥梁。下面进行详细解释:一、欧拉公式的几何意义 欧拉公式在...
欧拉公式的表达式是什么?
欧拉公式表达为:e^(ix) = cos(x) + i*sin(x)。在这个公式中,e代表自然对数的底数,i是虚数单位。该公式将三角函数的定义域扩展到了复数领域,并建立了三角函数与指数函数之间的联系,在复变函数理论中占据着极其重要的地位。如果我们把公式中的x替换为-x,可以得到另一个表达式:e^(-ix) =...
欧拉公式是什么?
欧拉公式是:对于任何实数x和正整数n,有公式e^ix = cos + isin成立。其中,e是自然对数的底数,i是虚数单位,cos和sin分别是余弦和正弦函数。欧拉公式连接了复数和三角函数这两个看似不同的数学领域。它的重要性在于,不论在复数计算还是在三角函数计算中,都可以通过欧拉公式相互转化,进一步拓展在...