(1+1/2+1/3+...+1/1999)*(1/2+1/3+...1/2000)

请将推导过程讲得详细一点,谢谢!!

要做这题,必须求1+1/2+1/3+....+1/n的求和公式,偶推了30分钟没有推出来,就上网查,结果查到下面的东西.

数列1/n没有求和公式,∑1/n是一个发散的级数,高等数学第二章函数的极限有证明的,它之所以没有求和公式,并不是因为发散的级数,而是因为它不能满足用公式求和的基本条件.它属于调和级数,也就是说要求这个数列的和,只能靠死算,可是当今数学不会有这样的题目的,毫无意义.所以,你这个问题是问倒了目前所有人了.

但是可以用欧拉公式解决:有一个近似公式Hk≈lnk+C,C叫欧拉常数,等于0.57721566490...

参考资料:http://zhidao.baidu.com/question/36369830.html

温馨提示:内容为网友见解,仅供参考
第1个回答  2008-01-22
该式=(1999+1998+1997+……+1)(2000+1999+1998+……+1)/1999*2000=(2000*999+1000)*2001*1000/1999*2000=10005000

(1+1\/2+1\/3+...+1\/1999)*(1\/2+1\/3+...1\/2000)
数列1\/n没有求和公式,∑1\/n是一个发散的级数,高等数学第二章函数的极限有证明的,它之所以没有求和公式,并不是因为发散的级数,而是因为它不能满足用公式求和的基本条件.它属于调和级数,也就是说要求这个数列的和,只能靠死算,可是当今数学不会有这样的题目的,毫无意义.所以,你这个问题是问倒了目前所...

计算(1+1\/2+1\/3+..+1\/1999)乘(1\/2+1\/3+..+1\/2000)-(1+1\/2+1\/3+..+...
设 x = 1+ 1\/2 +1\/3 +...+ 1\/1999 + 1\/2000 原式 = (x- 1\/2000)(x - 1) - x (x-1 - 1\/2000)= x² - x - (x\/2000) + 1\/2000 - x² +x + (x\/2000)= 1\/2000

(1+1\/2+1\/3+1\/4+...+1\/1999)*(1\/2+1\/3+1\/4+...+1\/2000)-(1+1\/2+...
=(1\/2+1\/3+1\/4+...+1\/2000)-(1+1\/2+1\/3+...+1\/1999)+1 =1\/2000-1+1 =1\/2000

1+1\/1+2+1\/1+2+3+...+1\/1+2+3...1999
原式 =2x(1-1\/2)+2x(1\/2-1\/3)+2x(1\/3-1\/4)+……+2x(1\/1999-1\/2000)=2x(1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/1999-1\/2000)=2x(1-1\/2000)=2-1\/1000 =1有1000分之999

怎样计算1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+1999)
1+n)=2[1\/n-1\/(1+n)]1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+1999)=1+2(1\/2-1\/3)+2(1\/3-1\/4)+……+2(1\/1999-1\/2000)=1+2(1\/2-1\/3+1\/3-1\/4+1\/4……+1\/1998-1\/1999+1\/1999-1\/2000)=1+2(1\/2-1\/2000)=1+1-1\/1000 =1999\/1000 ...

1+1\/1+2+1\/1+2+3+……+1\/1+2+……+1999
An=1\/(1+2+……+n)1+2+…+n=n*(n+1)\/2 An=2\/[n*(n+1)]=2*[1\/n - 1\/(n+1)]所以:1+1\/1+2+1\/1+2+3+……+1\/1+2+……+1999 =2*(1\/1-1\/2+1\/2-1\/3+…+1\/1999-1\/2000)=2*(1-1\/2000)=1999\/1000 ...

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...1999)
取第k项,1\/(1+2+...+k)=2\/(k*(k+1))=2(1\/k-1\/(k+1)),故 加到第n项 = 2(1-1\/2+1\/2-1\/3+...+1\/n-1\/(1+n))=2(1-1\/(1+n))=2n\/(1+n)当n=1999时,原式=1.999

1+2分之一 + 1+2+3分之一 +.1+2+3+4.+1999的计算结果是多少?
1+1\/(1+2)+1\/(1+2++3)+……+1\/(1+2+3+……+1999)=2*【1\/2+1\/2*(1+2)+1\/2*(1+2++3)+……+1\/2*(1+2+3+……+1999)】=2*【1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/1999-1\/2000】=2*【1-1\/2000】=2-1\/1000 =1.999 ...

(1\/2+1\/3+1\/4+1\/5...+1\/2000)这道题怎么做
(1\/2+...+1\/2000)×(1+1\/2+...+1\/1999)—(1+1\/2+...+1\/2000)×(1\/2+...+1\/1999)=(1\/2+...+1\/2000)×1+(1\/2+...+1\/2000)×(1\/2+...+1\/1999)—【1×(1\/2+...+1\/1999)+(1\/2+...+1\/2000)×(1\/2+...+1\/1999)】=(1\/2+...+1\/2000)×1+...

一道数学题,帮帮忙
这是调和级数,没有通项公式,有近似公式 1+1\/2+1\/3+...+1\/n≈lnn+C 1\/1000+1\/1001+1\/1002+1\/1003+1\/1004……1\/1999 =(1+1\/2+1\/3+...+1\/1999)-(1+1\/2+1\/3+...+1\/999)=ln1999-ln999 =ln(1999\/999)对于FENGBBQ 问ln是怎么来得 我只能说不知道,我只知道这个公式,...

相似回答