求不定积分∫1/(3+cosx)dx,

如题所述

用万能代换,令tan(x/2)=t,则 sinx=2t/(1+t^2),cosx=(1-t^2)/(1+t^2),dx=2/(1+t^2)dt
原积分化为∫ 1/(2+t^2)dt=1/√2arctant/√2 +C ,其中t=tan(x/2)
温馨提示:内容为网友见解,仅供参考
无其他回答

求不定积分∫1\/(3+cosx)dx,麻烦大家帮帮忙哈,谢谢啦^_^
就是万能代换。令t=tanx\/2,x=2arctant,dx=2\/(1+t^2)dt,cosx=(1-t^2)\/(1+t^2),代入得:∫1\/(3+cosx)dx=∫1\/(3+(1-t^2)\/(1+t^2))*2\/(1+t^2)dt=∫1\/(2+t^2)dt=(1\/√2)arctan(t\/√2)+C =(1\/√2)arctan(tan(x\/2)\/√2)+C ...

求不定积分∫1\/(3+cosx)dx,
用万能代换,令tan(x\/2)=t,则 sinx=2t\/(1+t^2),cosx=(1-t^2)\/(1+t^2),dx=2\/(1+t^2)dt 原积分化为∫ 1\/(2+t^2)dt=1\/√2arctant\/√2 +C ,其中t=tan(x\/2)

求不定积分∫1\/(3+cosx)dx, cosx是cosx=(1-t^2)\/(1+t^2),这是怎么得到...
tanx = sinx\/cosx = [2t\/(1 + t²)]\/[(1 - t²)\/(1 + t²)] = 2t\/(1 - t²)所以∫ dx\/(3 + cosx)= ∫ 1\/[3 + (1 - t²)\/(1 + t²)] * 2dt\/(1 + t²)= 2∫ dt\/[3(1 + t²) + (1 - t²)] dt =...

∫1\/(3+ cosx) dx求积分的步骤是什么
x=2arctant dx=2\/(1+t^2)dt cosx=(1-t^2)\/(1+t^2)代入得:∫1\/(3+cosx)dx =∫1\/(3+(1-t^2)\/(1+t^2))*2\/(1+t^2)dt =∫1\/(2+t^2)dt=(1\/√2)arctan(t\/√2)+C =(1\/√2)arctan(tan(x\/2)\/√2)+C ...

求不定积分:∫ 1\/(3+cosx) dx
令x=2u,则:u=x\/2,dx=2du。∴∫[1\/(3+cosx)]dx =2∫[1\/(3+cos2u)]du =2∫{1\/[3+2(cosu)^2-1]}du =2∫{1\/[2+2(cosu)^2]}du =∫{1\/[1+(cosu)^2]du =∫{1\/[2(cosu)^2+(sinu)^2]}du =∫{1\/[2+(tanu)^2]}...

请写出积分1\/(3+ cosx) dx的过程。
∫ 1\/(3 + cosx) dx= (1\/√2)arctan[(1\/√2)tan(x\/2)] + C。C为积分常数。解答过程如下:令u = tan(x\/2),cosx = (1 - u²)\/(1 + u²),dx = 2du\/(1 + u²)∫ 1\/(3 + cosx) dx = ∫ 1\/[3 + (1 - u²)\/(1 + u²)] · ...

∫1\/(3十cosx)dx
这个太复杂了,还是套积分表吧。公式:本题中,b=3,c=1,a=1 ∫[1\/(3+cosx)]dx =[2\/1·√(3²-1²)]arctan|[√(3-1)\/(3+1)]tan(x\/2)| +C =(√2\/2)arctan|[(√2\/2)tan(x\/2)| +C

∫dx\/3+cosx dx 详细过程
∫ 1\/(3 + cosx) dx= (1\/√2)arctan[(1\/√2)tan(x\/2)] + C。C为积分常数。解答过程如下:令u = tan(x\/2),cosx = (1 - u²)\/(1 + u²),dx = 2du\/(1 + u²)∫ 1\/(3 + cosx) dx = ∫ 1\/[3 + (1 - u²)\/(1 + u²)] · ...

1\/(3+cos x)的不定积分怎么算?
用万能代换,令t=tan(x\/2),则cosx=(1-t²)\/(1+t²),dx=2dt\/(1+t²)∫dx\/(3+cosx)=2∫dt\/(2t²+4)=∫dt\/(t²+2)=√2\/2arctan(t\/√2)+C =√2\/2arctan(tan(x\/2)\/√2)+C ...

1\/(3+cosx) 的不定积分
用万能代换。设tgx\/2=u 则 dx=[2\/(1+u^2)]du cosx=(1-u^2)\/(1+u^2)代入1\/(3+cosx)的 du\/(u^2+2)其原函数为(1\/√2)*arctg(u\/√2)把tgx\/2=u代入得 原函数为(1\/√2)*arctg[(tgx\/2)\/√2)]

相似回答