解:
^利用sinx的Taylor展式sinx=x-x^3/3!+x^5/5!-x^7/7!+...,故
f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...
由此知道f^(6)(0)/6!=-1/3!,故
f^(6)(0)=-6!/3!=-120。
Taylor展式有唯一性:其表达式必定是这样的:
f(x)=f(0)+f'(0)x+f''(0)x^2/2!+....+f^(n)(0)x^n/n!+...
即必有x^n的系数时f^(n)(0)/n!。
扩展资料:
泰勒公式的余项有两类:一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)。
参考资料来源:百度百科-泰勒公式
如何用泰勒公式求极限值?
在数学的广阔领域中,极限是一个至关重要的概念,在许多分支如微积分、实分析等都有着举足轻重的地位。而在解决涉及极限问题的过程中,泰勒公式无疑是一种极为强大且实用的工具。
首先,我们需要明确什么是泰勒公式以及其基本原理。泰勒公式是表达式函数的一种近似方法,它以给定点为中心展开成无穷级数的形式。具体而言,若一函数在其某点a处具有n阶导数值,则该函数可以表示为一个关于(x-a)的多项式的叠加,即泰勒公式。换言之,我们将一个复杂的函数通过逼近的方式转化为一个多项式来进行研究,大大简化了计算过程。
接下来让我们进一步阐述如何利用泰勒公式来求解极限问题。通常情况下,我们遇到的极限问题是寻求某个变量趋于某一特定值时,原表达式的极限值是多少。此时我们可以考虑使用泰勒公式对原表达式进行近似替换,即将原表达式中的部分或全部项替换为其对应的泰勒展开式,并通过对新表达式的运算得出结果。
为了更好地理解这一概念,下面我们以具体的例子来进行说明:
例:试求当x趋近于0时,sin(x)/x的极限值。
解析:根据泰勒公式的相关知识我们知道,对于任意正整数n,有 sin(x) = Σ (-1)^k * (x^(2k+1)) / (2k+1)! ,其中Σ表示求和符号,k取自0到n。于是我们先将sin(x)用它的泰勒公式展开式代入原表达式得到:
sin(x) / x = [Σ (-1)^k * (x^(2k+1)) / (2k+1)!] / x
接着继续化简上述表达式,因为题目要求的是x趋向于0的情况,所以除以x之后,只有当指数为奇数的时候才会留下非零项;并且由于分母都是大于等于1的正整数,因此可以直接忽略掉所有偶数项。这样我们就得到了一个新的表达式:
sin(x) / x ≈ Σ (-1)^(k) * ((x^(2k-1)) / (2k-1)!) (其中k取奇数)
最后再结合几何级数的知识可知,当x→0时,上式的结果应当为1/2π。这就完成了我们的证明过程。
综上所述,借助泰勒公式展开法不失为一种高效快捷地解决极限问题的有效手段。当然值得注意的是,这种方法并非万能钥匙,在面对某些特殊类型的极
怎么使用泰勒公式求极限?
首先,确定待求极限的表达式中是否存在某个可导函数;如果存在可导函数,则将其展开成泰勒公式的形式,即 f(x) ≈ f(a) + f'(a)(x-a) + f''(a)\/2!*(x-a)^2 + ...接着,代入 x 的极限值,以及相应的 a 值;最后,根据泰勒公式的展开形式,以及极限运算规则,求解出极限值。需要注...
如何用泰勒展开求极限?
泰勒公式形式 泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,...
怎样用泰勒公式求函数的极限?
泰勒公式:f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)\/2!*(x-x0)^2+...+f(n)(x0)\/n!*(x-x0)^n 定义:泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数 在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式...
泰勒公式如何求极限?
泰勒公式求极限,具要看题设,有的题展开3项即能作答,而有的题则要求展开到n项。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在...
如何用泰勒公式求极限?
根据泰勒公式 分子 e^(x^2) = 1 +x^2 +(1\/2)x^4 +o(x^4)cosx = 1- (1\/2)x^2 +(1\/24)x^4 +o(x^2)e^(x^2)+2cosx -3 =[1 +x^2 +(1\/2)x^4 +o(x^4)] +2[1- (1\/2)x^2 +(1\/24)x^4 +o(x^2)] -3 =(1\/2+1\/12)x^4 +o(x^4)=(7\/12)...
利用泰勒公式求极限
利用泰勒公式求极限如下:泰勒公式是一种将函数表示为无限次可导函数的级数的方法。具体来说,对于一个在某个点X0处无限次可导的函数f(X),泰勒公式可以表示为:F(X)=f(X0)+f(X0)(x-XO)+f“(XO)(x-X0)*2\/2i+f”“(XO)(x-X0)”3\/3!+...其中,f(X0)表示f(X)在X0处的一...
泰勒公式怎么求极限?
^利用sinx的Taylor展式sinx=x-x^3\/3!+x^5\/5!-x^7\/7!+...,故 f(x)=x^4-x^6\/3!+x^8\/5!-x^10\/7!+...由此知道f^(6)(0)\/6!=-1\/3!,故 f^(6)(0)=-6!\/3!=-120。Taylor展式有唯一性:其表达式必定是这样的:f(x)=f(0)+f'(0)x+f''(0)x^2\/2!+...+...
怎样用泰勒公式求极限?
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法。3、运用两个特别极限。4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是...
泰勒公式怎么求?
常用泰勒展开公式如下:1、sinx=x-1\/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。2、arcsinx=x+1\/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。3、tanx=x+1\/3x^3+o(x^3),这是泰勒公式的...
泰勒公式怎么求极限?
这是写在纸上的八个常见的泰勒公式,泰勒公式是等号而不是等价,这就使所有函数转化为幂函数,在利用高阶无穷小被低阶吸收的原理,可以秒杀大部分极限题。