泰勒公式形式
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:
其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。[1]
余项
泰勒公式的余项Rn(x)可以写成以下几种不同的形式:
1、佩亚诺(Peano)余项:
这里只需要n阶导数存在。
2、施勒米尔希-罗什(Schlomilch-Roche)余项:
其中θ∈(0,1),p为任意正实数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)[2]
3、拉格朗日(Lagrange)余项:
其中θ∈(0,1)。
4、柯西(Cauchy)余项:
其中θ∈(0,1)。
5、积分余项:
其中以上诸多余项事实上很多是等价的。[2]
带佩亚诺余项
以下列举一些常用函数的泰勒公式[1]:
如何用泰勒展开求极限?
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式...
如何用泰勒展开式证明极限?
lim(x->∞) ∫(0->x) arctanv dv \/√(1+x^2) (∞\/∞ 分子分母分别求导)=lim(x->∞) arctanx \/ [x\/√(1+x^2)]=lim(x->∞) arctanx \/ [x\/√(1+x^2)]=lim(x->∞) arctanx =π\/2
如何用泰勒公式展开
内容如下:1、sinx=x-1\/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。2、arcsinx=x+1\/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。3、tanx=x+1\/3x^3+o(x^3),这是泰勒公式的正切展开公式...
如何用泰勒展开法求极限?
利用洛必达法则 lim(x→0) (arctanx - sinx)\/x³
怎么使用泰勒公式求极限?
要使用泰勒公式求极限,首先需要确定待求极限函数是否满足泰勒公式的条件。一般来说,如果函数在某一点处可导,并且在其周围有有限个正数范围内都可以展开成幂级数,则可以在该点使用泰勒公式求解极限。具体的步骤如下:首先,确定待求极限的表达式中是否存在某个可导函数;如果存在可导函数,则将其展开成...
x趋于无穷的极限如何用泰勒展开来求?
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。根据ln(1+x)=x-x^2\/2 得出ln(1+1\/x)=1\/x-1\/x^2\/2 得出极限=x-[x-1\/2]=1\/2 N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖...
怎样用泰勒公式求函数的极限?
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)\/2!*(x-x0)^2+...+f(n)(x0)\/n!*(x-x0)^n 定义:泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数 在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数 ...
如何用泰勒公式求极限?
求极限时,使用等价无穷小的条件 :被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。x -> 0 时,sinx - x ~ -x^3 \/ 6 。用函数的泰勒展开式:sinx ~ x - x^3\/6 + x^5\/120 - ...。因此当 x -...
泰勒公式如何求极限?
泰勒公式求极限,具要看题设,有的题展开3项即能作答,而有的题则要求展开到n项。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在...
用泰勒公式求极限
1、由泰勒公式可得:(在xo=0点展开式)cos3x=1-(9\/2)x^2+(27\/8)x^4+o(x^6)e^(-x^2)=1-x^2+(1\/2)x^4+o(x^5)sin2x=2x-(4\/3)x^3+o(x^4) 将以上等式代入所求极限中:原式=lim[(-7\/2)x^2+(23\/8)x^4+o(x^5)]\/[2x^2-(4\/3)x^4+o(x^5)]=-7\/...